The equilibrium membrane potential is 41.9 mV.
To calculate the membrane potential, we use the <em>Nernst Equation</em>:
<em>V</em>_Na = (<em>RT</em>)/(<em>zF</em>) ln{[Na]_o/[Na]_ i}
where
• <em>V</em>_Na = the equilibrium membrane potential due to the sodium ions
• <em>R</em> = the universal gas constant [8.314 J·K^(-1)mol^(-1)]
• <em>T</em> = the Kelvin temperature
• <em>z</em> = the charge on the ion (+1)
• <em>F </em>= the Faraday constant [96 485 C·mol^(-1) = 96 485 J·V^(-1)mol^(-1)]
• [Na]_o = the concentration of Na^(+) outside the cell
• [Na]_i = the concentration of Na^(+) inside the cell
∴ <em>V</em>_Na =
[8.314 J·K^(-1)mol^(-1) × 293.15 K]/[1 × 96 485 J·V^(-1)mol^(-1)] ln(142 mM/27 mM) = 0.025 26 V × ln5.26 = 1.66× 25.26 mV = 41.9 mV
Answer:
See below!
Explanation:
For the chemical formula, you need to have enough of each atom so that the charge is zero.
Aluminum has a +3 charge, and fluorine has a -1 charge. Since the charge has to be zero, you need three fluorines, giving you AlF₃.
Barium has a +2 charge, and oxygen has a -2 charge. Since the charges are equal in magnitude but opposite in sign, you only need one of each atom giving you BaO.
The name of the ionic compound will be the metal and then the nonmetal. When putting the nonmetal in, change the ending to "-ide". For example "chlorine" would be "chloride.
CaCl₂ ==> calcium chloride
Ga₂S₃ ==> gallium sulfide
K₃N ==> potassium nitride
AlF₃ ==> aluminum fluoride
BaO ==> barium oxide
Answer: The correct answer is Heterogeneous mixture
Explanation:
Heterogeneous mixture are those mixture in which:
- Substance is distributed in non uniform manner.
- Two distinct layers are formed
Thus when water and dirt are mixed together it results in the formation of a heterogeneous mixture and after sometimes two different layers will be observed.
Hence, in the bottle there is a heterogeneous mixture of water and dirt.
Answer:
1. V2.
2. 299K.
3. 451K
4. 0.25 x 451 = V2 x 299
Explanation:
1. The data obtained from the question include:
Initial volume (V1) = 0.25mL
Initial temperature (T1) = 26°C
Final temperature (T2) = 178°C
Final volume (V2) =.?
2. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K
3. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Final temperature (T2) = 178°C
Final temperature (T1) = 178°C + 273 = 451K
4. Initial volume (V1) = 0.25mL
Initial temperature (T1) = 299K
Final temperature (T2) = 451K
Final volume (V2) =.?
V1 x T2 = V2 x T1
0.25 x 451 = V2 x 299