Answer:
Carbon dioxide is held together by weak intermolecular forces (only London dispersion <em>LD</em>) and is a non-polar molecule. Because of this weak attraction, it exists as a gas. Water on the other hand is polar (dipole forces <em>DP</em>), and has a stronger hydrogen bond existing within it (in addition to <em>LD</em>). This makes it attract itself more than say carbon dioxide molecules, so it commonly exists as a liquid. Finally, salt like water is polar, and has ionic bonds that are even stronger than a hydrogen bond. This makes salt have a great attraction to itself, sticking together as a solid because its molecules cant easily be broken up.
Explanation:
These are the strongest intermolecular forces ranked from strongest to weakest.
1. Network Covalent
2. Ionic
3. Hydrogen Bonding
4. Dipole Dipole
5. London Dispersion
Answer: 1.27 bar
Explanation:
1 atm = 1.01325 bar
1.25 atm = Z (let Z be the unknown value)
To get the value of Z, cross multiply
Z x 1 atm = 1.25 atm x 1.01325 bar
1 atm•Z = 1.2665625 atm•bar
To get the value of Z, divide both sides by 1 atm
1 atm•Z/1 atm = 1.2665625 atm•bar/1atm
Z = 1.2665625 bar
(Round up Z to the nearest hundredth as 1.27 bar)
Thus, 1.25 atm when coverted gives 1.27 bar
Empirical formula is the simplest ratio of whole numbers of components in a compound
calculating for 100 g of compound
C H O
mass 64.27 g 7.19 g 28.54 g
number of moles 64.27 g / 12 g/mol 7.19 g/1 g/mol 28.54 g / 16 g/mol
= 5.356 mol = 7.19 mol = 1.784 mol
divide by least number of moles
5.356 / 1.784 7.19 / 1.784 1.784 / 1.784
= 3.002 4.03 = 1.000
rounded off to nearest whole number
C - 3
H - 4
O - 1
empirical formula - C₃H₄O
mass of empirical formula = 12 g/mol x 3 + 1 g/mol x 4 + 16 g/mol x 1 = 56 g
molecular mass = 168.19 g/mol
molecular formula is the actual ratio of elements making up the compound
number of empirical units = molar mass of molecule / empirical mass
empirical units = 168.19 g/mol / 56 g = 3.00
there are 3 empirical units making up the molecular formula
molecular formula = 3 x C₃H₄O
molecular formula = C₉H₁₂O₃
Answer:
Explanation:
The number of moles of solute is equal to product of the molar concentration (molarity) and the volume (in liters) of solution.
Since the volumes and the molar concentrations of the<em> NaOH </em>and <em>HCl </em>solutions mixed are equal, each one of them contributes the same number of moles of solute.
Since every mol of NaOH produces one mol of OH⁻ ions and every mol of HCl produces one mol of H⁺ ion, the number of moles of OH ⁻ and H⁺ in solution are equal.
Thus, OH⁻ and H⁺ ions will be neutralized by the reaction:
- OH⁻ (aq) + H⁺ (aq) ⇄ H₂O (l)
Which is strongly shifted to the right and has <em>neutral pH</em>.
Hence, you conclude that the approximate <em>pH of the solution is neutral.</em>