Answer:
Valence electrons (the electrons on the outermost shell of the atom) are responsible for bonding
Explanation:
Answer:
The kind of ionic compound formed is MX2.
Explanation:
Element X electron configuration is represented as [core] ns2np5. The group in the periodic table this element belong to is group 7A. The element group is called the halogen family. Element X cannot be stated specifically, because the number is represented with n. Element X will behave as an anions when it react with a metal(cations). Element X has a charge of -1. The element X will gain electron when it bond with a metal. Element X is a non metal . Elements in this group are fluorine, chlorine, bromine, iodine , astatine, and tennessine . The element X have 7 valency electrons.
Element M electronic configuration is represented as [core]ns2. The group in the periodic table this element belong to is group 2A . The element group is called the alkaline earth metals family . Element M will behave as a cation when it bond with a non metal. Element M is a metal , therefore it will likely lose electron to form cations during bonding . The charge of element M is 2+. Element M is positively charged. Elements that belong to this group includes beryllium, magnesium, calcium, strontium, barium and radium. Element M has 2 valency electrons.
The reaction between this 2 ions will likely form an ionic compound . The element M is the cations while the element X is the anions. The element M will lose 2 electron while 2 atoms of element X will gain 2 electrons.Element M will lose 2 electron to attain a stable configuration while 2 atoms of element X will gain a single electron each to attain a stable configuration.
M²+ and F- . This will form MX2 when you cross multiply the charge. The kind of ionic compound formed is MX2.
2 NH3 -> 1 N2 + 3 H2
Explanation:
That would be the answer to this
Answer:
Sand
Explanation:
with salt distillation will work, heat the solution and collect the water in a seperate beaker
With sugar you do the same, boil away the water and collect the water vapour, you'll be left with sugar in the original container and water if you collected it
Use a fraction of column and heat the solution, the alcohol will be seperated out
Sand is the only one that uses mechanical filtration
The molecular formula of sucrose is - C₁₂H₂₂O₁₁
molecular mass of sucrose - 342 g/mol
molarity of sucrose solution is 0.758 M
In 1 L solution the number of sucrose moles are - 0.758 mol
Therefore in 1.55 L solution, sucrose moles are - 0.758 mol/L x 1.55 L
= 1.17 mol
The mass of 1.17 mol of sucrose is - 1.17 mol x 342 g/mol = 4.00 x 10² g