The first system to classify blood types is known as<u> A-B-O system</u>.
<u>Option: D</u>
<u>Explanation:</u>
The blood group system "ABO" is the categorizing of human blood centered on the hereditary characteristics of red blood cells means erythrocytes as measured by the presence or absence of A and B antigens on the surface of the red cells. Thus individuals may well have blood type A, type B, type O or type AB.
It was absent until 1900, when Karl Landsteiner established the concept at the Vienna University why some blood transfusions were effective while others were lethal. Landsteiner established the blood group mechanism ABO by combining each of his staff's red cells and serum.
D
Sharing
Formation of water is a covalent bond which involves the sharing of electrons between two reacting atoms so that both can attain the stable octet structure
Answer:
Chlorine is limiting reactant
Explanation:
Based on the reaction:
Cl₂ + 2NaOH → NaClO + NaCl + H₂O
<em>1 mole of chlorine reacts with 2 moles of NaOH</em>
<em />
To find limiting reactant, we need to determine the moles of the reactants:
<em />
<em>Moles Cl₂ -Molar mass: 70.9g/mol-:</em>
800lb Cl₂ * (453.6g / 1lb) * (1mol / 70.90g) =
5118 moles Cl₂
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
1200lb NaOH * (453.6g / 1lb) * (1mol / 40g) =
13608 moles NaOH
For a complete reaction of 13608 moles of NaOH you need:
13608 moles NaOH * (1mol Cl₂ / 2 moles NaOH) = 6804 moles of Cl₂
As the solution contains just 5118 moles of chlorine,
<h3>Chlorine is limiting reactant</h3>
So what you’re going to do is basically the + and - in each top hand corner is the charge of compound, so for example Li has a charge of +1 while Br has a charge of -1 , to write the formula you need to get the charges to cancel out ( equal zero) so luckily this was easy because -1 +1 =0 ! So it would be LiBr. Though for another example Al has a charge of 3+ while br has a charge of -1 and these do not equal zero, so as a result you have to add more br making the Formula AlBr3! Hope this helps!