Answer:
The amount of current that must flow through the wire for it to be suspended against gravity by magnetic force = 6.125 A
Explanation:
Force on a wire carrying current in an electric field is given by
F = (B)(I)(L) sin θ
For this question,
The magnetic force must match the weight of the wire.
F = mg
mg = (B)(I)(L) sin θ
(m/L)g = (B)(I) sin θ
Mass per unit length = 75 g/m = 0.075 kg/m
B = magnetic field = 0.12 T
I = ?
g = acceleration due to gravity = 9.8 m/s
θ = angle between wire's current direction and magnetic field = 90°
0.075 × 9.8 = 0.12 × I sin 90°
I = 0.075 × 9.8/0.12 = 6.125 A
It is most likely vegetable oil
Answer:
solution:
dT/dx =T2-T1/L
&
q_x = -k*(dT/dx)
<u>Case (1) </u>
dT/dx= (-20-50)/0.35==> -280 K/m
q_x =-50*(-280)*10^3==>14 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (3)
q_x =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4)
q_x =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5)
q_x =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
Answer:
A) E = 4.96 x 10³ eV
B) E = 4.19 x 10⁴ eV
C) E = 3.73 x 10⁹ eV
Explanation:
A)
For photon energy is given as:


where,
E = energy of photon = ?
h = 6.625 x 10⁻³⁴ J.s
λ = wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Therefore,

<u>E = 4.96 x 10³ eV</u>
<u></u>
B)
The energy of a particle at rest is given as:

where,
E = Energy of electron = ?
m₀ = rest mass of electron = 9.1 x 10⁻³¹ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,


<u>E = 4.19 x 10⁴ eV</u>
<u></u>
C)
The energy of a particle at rest is given as:

where,
E = Energy of alpha particle = ?
m₀ = rest mass of alpha particle = 6.64 x 10⁻²⁷ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,


<u>E = 3.73 x 10⁹ eV</u>
Answer: Could you please add the answer choices.
Explanation:
Thank you :)