Answer:
t = 0.714 s and x = 5.0 m
Explanation:
This is a projectile throwing exercise, in this case when the skater leaves the bridge he goes with horizontal speed
vₓ = 7.0 m / s
Let's find the time it takes to get to the river
y = y₀ + v_{oy} t - ½ g t²
the initial vertical speed is zero and when it reaches the river its height is zero
0 = y₀ + 0 - ½ g t²
t =
t = ra 2 2.5 / 9.8
t = 0.714 s
the distance traveled is
x = vₓ t
x = 7.0 0.714
x = 5.0 m
Answer:
8.97 Watt
Explanation:
Resistance, R = 20 ohm
Inductance, L = 10 mH
V(t) = 20 Cos (1000 t + 45°)
Compare with the standard equation
V(t) = Vo Cos(ωt + Ф)
Ф = 45°
ω = 1000 rad/s
Vo = 20 V
Inductive reactance, XL = ωL = 1000 x 0.01 = 10 ohm
impedance is Z.
Z = 22.36 ohm
Apparent power is given by
P = Vrms x Irms
P = 14.144 x 0.634
P = 8.97 Watt
number 2 because the curve demstrates the crest GOOD LUCK i hope i got you the correct answer if not sorry
Answer:
Ff = 19.6 N
Explanation:
So since its saying whats the minimum F to move the block, we will use static friction (0.5).
We will use the equation for force of friction, which is Ff = uFn
Ff = (0.5)(4)(9.8)
Ff = 19.6 N
this is the minumum force needed to move the block, as that is the frictional force. You would need to apply a minimum force of 19.6 N to move the block
G is the gravitational constant, which is approximately 6.6x10^-11 Nm/s^2. It has the same value regardless of the masses of both objects or the distance between them.