<span>Answer:
So this involves right triangles. The height is always 100. Let the horizontal be x and the length of string be z.
So we have x2 + 1002 = z2. Now take its derivative in terms of time to get
2x(dx/dt) = 2z(dz/dt)
So at your specific moment z = 200, x = 100âš3 and dx/dt = +8
substituting, that makes dz/dt = 800âš3 / 200 or 4âš3.
Part 2
sin a = 100/z = 100 z-1 . Now take the derivative in terms of t to get
cos a (da./dt) = -100/ z2 (dz/dt)
So we know z = 200, which makes this a 30-60-90 triangle, therefore a=30 degrees or π/6 radians.
Substitute to get
cos (Ď€/6)(da/dt) = (-100/ 40000)(4âš3)
âš3 / 2 (da/dt) = -âš3 / 100
da/dt = -1/50 radians</span>
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :

R is the Rydberg's constant
For Balmer series, n₁ = 2. So,


or

So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.
Answer:
<u><em>375 J</em></u>
Explanation:
<u><em>Total energy</em></u> = 750 J
<u><em>Efficiency</em></u> = 50%
<u><em>Wasted energy</em></u> = 50% [100% - 50%]
<u><em>Amount of wasted energy</em></u>
= 750 x 50%
= 750 x 0.5
= 375 J