1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
6

When a generator rotates a coil of wire in a magnetic field, which of the following is produced?

Physics
1 answer:
Sloan [31]3 years ago
4 0
The correct answer is an ''electric current''.
You might be interested in
What is the emf produced in a 1.5 meter wire moving at a speed of 6.2 meters/second perpendicular to a magnetic field of strengt
madam [21]
E. 0.037 Volts. It's correct for Plato. The actual answer is around 0.0369 Volts
8 0
3 years ago
Read 2 more answers
A gas occupies 0.60 m3 at a 5.0 atm. If the temperature of the gas remains the same and the pressure decreases to 2.5 atm, what
Naddika [18.5K]

Answer:

its 6 :) hdgdgsvhdhs

Explanation:

hdhdhscdhsjsvdjsjwjshd

8 0
3 years ago
Why does a solid keep its shape
garri49 [273]

Answer:

Solids can hold their shape because their molecules are tightly packed together. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want. The molecules in a solid are stuck in a specific structure or arrangement of atoms.

7 0
3 years ago
Find the direction and magnitude of the net force exerted on the point charge q3 in the figure. Let q= +2.4 μC and d= 33cm.
kobusy [5.1K]

With the use of electric force formula, the direction and magnitude of the net force exerted on the point charge q3 are 9.9 x 10^{11} N and 66 degrees

ELECTRIC FORCE (F)

F = \frac{KQq}{d^{2} }

Where K = 9 x 10^{9} Nm^{2}/C^{2}

The distance between q_{1} and q_{3} can be calculated by using Pythagoras theorem.

d = \sqrt{33^{2} + 33^{2}  }

d = 46.7 cm = 0.467 m

For force F_{1}, substitute all the parameters into the formula above

F_{1} = (9 x 10^{9} x 3 x 1)/0.467^{2}

F_{1} = 2.7 x 10^{10}/0.218

F_{1} = 1.24 x 10^{11} N

For force F_{4}, substitute all the parameters into the formula above

F_{4} = (9 x 10^{9} x 3 x 4)/0.33^{2}

F_{4} = 1.08 x 10^{11}/0.1089

F_{4} = 9.92 x 10^{11} N

For force F_{2}, substitute all the parameters into the formula above

F_{2} = (9 x 10^{9} x 3 x 2)/0.33^{2}

F_{2} = 5.4 x 10^{10}/0.1089

F_{2} = 4.96 x 10^{11} N

Summation of forces on Y component will be

F_{y} = F_{4} - F_{1} Sin 45

F_{y} = 9.92 x 10^{11} - 1.24 x 10^{11} Sin 45

F_{y} = 9.04 x 10^{11} N

Summation of forces on X component will be

F_{x} = F_{2} - F_{1} Cos 45

F_{x} = 4.96 x 10^{11} - 1.24 x 10^{11} Sin 45

F_{x} = 4.08 x 10^{11} N

Net Force = \sqrt{F_{x} ^{2} + F_{y} ^{2}  } }

Net force = \sqrt{(4.08*10^{11}) ^{2} + (9.04*10^{11}) ^{2}  }

Net force = 9.9 x 10^{11} N

The direction will be

Tan ∅ = F_{y}/F_{x}

Tan ∅ = 9.04 x 10^{11} / 4.08 x 10^{11}

Tan ∅ = 2.216

∅ = Tan^{-1}(2.216)

∅ = 65.7 degrees

Therefore, the direction and magnitude of the net force exerted on the point charge q3 are 9.9 x 10^{11} N and 66 degrees approximately.

Learn more about electric Force here: brainly.com/question/4053816

8 0
2 years ago
Read 2 more answers
You are holding a positive charge and there are positive charges of equal magnitude 1 mm to your north and 1 mm to your east. Wh
lara [203]

If I hold a positive charge in my hand and there are positive charges of equal magnitude 1 mm to your north and 1 mm to your east then the direction of the force on the charge I am holding is towards the north-east direction.

Reasoning:

It is given that there is a positive charge in my hand. There are two more positive charges with the same magnitude. One is 1 mm far towards the east, and the other one is 1 mm far towards the north. It is required to find the direction of the force acting on the charge in my hand.

Let the magnitude of the charge in my hand is Q, and the magnitude of the other charges is q.

Thus the electric force applied on the charge in my hand due to each other is,

F=\frac{kQq}{r^2}

Here k is the Coulomb constant, and r is the distance between the charges.

It is also known that the force on a positive charge due to another positive charge is acted outwards.

Thus, the force on the charge due to the charge on the east is,

\vec{F_1}=\frac{kQq}{( 10^{-3}\text{ m})^2}\hat{i}

And the force on the charge due to the charge on the north is,

\vec{F_2}=\frac{kQq}{( 10^{-3}\text{ m})^2}\hat{j}

As the forces are equal in magnitude and one is perpendicular to the other, thus the net force will be acted at an angle of 45^\circ from the north or from the north direction.

Thus the net force is acting in the north-east direction.

Learn more about the direction of the force here,

brainly.com/question/2037071

#SPJ4

3 0
2 years ago
Other questions:
  • What units are used to measure mass and weight? Mass and weight are measured in kilograms. Mass and weight are measured in newto
    6·2 answers
  • Which of Franz Mesmer’s claims about his mesmerism abilities eventually led to his downfall?
    5·2 answers
  • Why is the answer B and not E?
    8·2 answers
  • (a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500-μC charge and flies due west at a spee
    5·1 answer
  • National Instant Criminal Background Check System is used for a person trying to access a government website.
    7·1 answer
  • A proton travels with a speed of 4.2×106 m/s at an angle of 30◦ west of north. A magnetic field of 2.5 T points to the north. Fi
    14·1 answer
  • HEEEEEEELLLLLPPPPPPP 20 points and Brainliest
    6·1 answer
  • Please help me asap !!!!!!
    11·1 answer
  • When a constant force acts on an object, what does the object's change in momentum depend upon?
    15·1 answer
  • g What is the final velocity of a hoop that rolls without slipping down a 6.92 m high hill, starting from rest
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!