1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
12

Part A.)Six boxes held at rest against identical walls.

Physics
1 answer:
krok68 [10]3 years ago
6 0

Answer:

Explanation:

When a body is held against a vertical wall , to keep them in balanced position , normal force is applied on their surface . this force creates normal reaction which acts against the normal force and it is equal to the normal force as per newton's third law . Ultimately friction force is created which is proportional to normal force and it acts in vertically upward direction . It prevents the body from falling down .

Hence normal force = reaction force .

From second law also net force is zero , so if  normal force is N and reaction force is R

R - N = mass x acceleration = mass x 0 = 0

R = N .

Ranking normal force from  highest  to smallest

150 N , 130 N , 120 N

B )

Frictional force is equal to the weight of the body because the body is held at rest .

Ranking of frictional force form largest to smallest

7 kg , 5 kg , 3 kg , 1 kg .

Here frictional force is irrespective of the normal force acting on the body  because frictional force adjusts itself so that it becomes equal to weight in all cases here because it always balances the weight of the body .

You might be interested in
Which special effects technique is being used in television weather reports in which meteorologists stand in front of moving map
Pachacha [2.7K]
A. cgi... they're usually filmed with a greenscreen and is keyed out in editing. known as chroma keying
6 0
2 years ago
Read 2 more answers
If both mass and speed are doubled, what happens to its momentum?
puteri [66]

The general formula is:      Momentum = (mass) x (speed)

I never like to just write a bunch of algebra without explaining it.
But in this particular case, there's really not much to say, and
I think the algebra will pretty well explain itself.  I hope so:


Original momentum = (original mass) x (original speed)


New momentum = (2 x original mass) x (2 x original speed)

                           = (2) x (original mass) x (2) x (original speed)

                           = (2) x (2) x (original mass) x (original speed)

                           =  (4) x (original mass) x (original speed)

                           =  (4) x (original momentum).

7 0
3 years ago
Compare the time period of two simple pendulums of length 4m and 16m at a place.
Vlad1618 [11]

Answer:

the period of the 16 m pendulum is twice the period of the 4 m pendulum

Explanation:

Recall that the period (T) of a pendulum of length (L)  is defined as:

T=2\,\pi\,\sqrt{ \frac{L}{g} }

where "g" is the local acceleration of gravity.

SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

T_1=2\,\pi\,\sqrt{\frac{4}{g} } \\T_2=2\,\pi\,\sqrt{\frac{16}{g} } \\ \\\frac{T_2}{T_1} =\sqrt{\frac{16}{4} } =2

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.

5 0
2 years ago
A reservoir located in the mountain 250 m above sea level flows through a pipe to a hydroelectric plant in a town at sea level.
Pavlova-9 [17]

Answer:

     v₂ = 70 m / s

Explanation:

For this exercise let's use Bernoulli's equation

where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level

 

          P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂

indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute

         ρ g y₁ = ½ ρ v₂²

         v₂ = \sqrt {2g \ y_1}

let's calculate

         v₂ = √( 2 9.8 250)

         v₂ = 70 m / s

6 0
3 years ago
•<br> What happens to similar charged<br> particles and differently charged<br> particles
mixas84 [53]

Answer:

Like charges repel

Different charges attract

Explanation:

When particles of similar charges are brought together, they repel each other and increase the distance of separation. Repulsion occurs because both two electrons have negative electrical charge forcing their lines of force to repel. However, when particles of opposite charges are brought nearer to each other, they attract each other and reduce the distance of separation.

8 0
3 years ago
Other questions:
  • Why is our (a person's) gravitational pull NOT as strong as the Earth's gravitational pull
    13·1 answer
  • Which layer in the Earth has a composition similar to the granite shown in this photograph?
    6·1 answer
  • A Porter carries a 25 kg suitcase a distance of 1 km. Explain why the Porter does no work
    14·1 answer
  • Can a flashlight cause skin cancer
    7·1 answer
  • A 60.0-kg ball of clay is tossed vertically in the air with an initial speed of 4.60 m/s. Ignoring air resistance, what is the c
    9·1 answer
  • Which are true of alpha radiation?
    5·1 answer
  • A disk with a rotational inertia of 2.5 kg-m2 and a radius 1.1 m rotates on a frictionless fixed axis perpendicular to the disk
    14·1 answer
  • Is a man kicking ball potential or kinetic?
    9·1 answer
  • A .25 kg ball initially at rest is hit with a 460 N impact. What is the impulse for the ball if it ends up moving at 40 m/s?
    13·1 answer
  • Which would most likely cause a decrease in the rate of energy production in a fusion nuclear reactor?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!