The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
Listen if you have to cheat for the dba thing not worth even doing that dba tbh this is very easy as I just did it in like 5 minutes it gives you everything you need even the formulas so use your f .u .c .k. 1 .n g brain you monkey...
Answer:
Though you have not gave the choices, I do believe it is “testing”
Explanation:
Answer:
medium
Explanation:
<em>A sound </em><em>medium</em><em> is defined as channel through which sound can travel or be transmitted. </em>
Sound medium could be in the form gases, liquids, solids or plasmas. Space is made up of vacuum and therefore, has no medium within it. Hence, space cannot transmit sound in any form or allows sound to travel through it.
The correct answer is - a. was a sign of danger.
Once the people saw that the ocean waters are receding and were living vast space without water behind them, they knew that something big and very dangerous will happen. And in fact it did. The water that was sucked in in the place were there was a crack on the ocean floor, got shot back under big pressure and it had very big speed, as well as having waves that were destroying anything on their way.