The distance between slit and the screen is 1.214m.
To find the answer, we have to know about the width of the central maximum.
<h3>How to find the distance between slit and the screen?</h3>
- It is given that, wavelength 560 nm passes through a slit of width 0. 170 mm, and the width of the central maximum on a screen is 8. 00 mm.
- We have the expression for slit width w as,

where, d is the distance between slit and the screen, and a is the slit width.
- Thus, distance between slit and the screen is,

Thus, we can conclude that, the distance between slit and the screen is 1.214m.
Learn more about the width of the central maximum here:
brainly.com/question/13088191
#SPJ4
Answer:
50 meters
Explanation:
Let's start by converting to m/s. There are 3600 seconds in an hour and 1000 meters in a kilometer, meaning that 72km/h is 20m/s.

Since the car starts at rest, you can write the following equation:

Now that you have the acceleration, you can do this:

Once again, there is no initial velocity:

Hope this helps!
Answer:
12164.4 Nm
Explanation:
CHECK THE ATTACHMENT
Given values are;
m1= 470 kg
x= 4m
m2= 75kg
Cm = center of mass
g= acceleration due to gravity= 9.82 m/s^2
The distance of centre of mass is x/2
Center of mass(1) = x/2
But x= 4 m
Then substitute, we have,
Center of mass(1) = 4/2 = 2m
We can find the total torque, through the summation of moments that comes from both the man and the beam.
τ = τ(1) + τ(2)
But
τ(1)= ( Center of m1 × m1 × g)= (2× 470× 9.81)
= 9221.4Nm
τ(2)= X * m2 * g = ( 4× 75 × 9.81)= 2943Nm
τ = τ(1) + τ(2)
= 9221.4Nm + 2943Nm
= 12164.4 Nm
Hence, the magnitude of the torque about the point where the beam is bolted into place is 12164.4 Nm
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!