Answer:
a) ![T(t) = \frac{}{5}=](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7B%3C-5%20sin%285t%29%2C%205cos%285t%29%3E%7D%7B5%7D%3D%20%3C-sin%285t%29%2C%20cos%285t%29%3E)
![T(4) =](https://tex.z-dn.net/?f=%20T%284%29%20%3D%20%3C-sin%2820%29%2C%20cos%2820%29%3E)
b) ![T(t) = \frac{}{8\sqrt{37}}](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7B%3Ct%5E2%2C%203t%5E2%3E%7D%7B8%5Csqrt%7B37%7D%7D)
![T(4) =](https://tex.z-dn.net/?f=%20T%284%29%20%3D%20%3C%5Cfrac%7B2%5Csqrt%7B37%7D%7D%7B37%7D%2C%5Cfrac%7B6%5Csqrt%7B37%7D%7D%7B37%7D%20%3E)
c) ![T(t) = \frac{}{2425825977}](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7B%3C5e%5E%7B5t%7D%2C%20-4e%5E%7B-4t%7D%2C%201%3E%7D%7B2425825977%7D)
![T(4) = \frac{1}{2425825977}](https://tex.z-dn.net/?f=%20T%284%29%20%3D%20%5Cfrac%7B1%7D%7B2425825977%7D%3C5e%5E%7B50%7D%2C%20-4e%5E%7B-16%7D%2C1%20%3E)
Step-by-step explanation:
The tangent vector is defined as:
![T(t) = \frac{r'(t)}{|r'(t)|}](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7Br%27%28t%29%7D%7B%7Cr%27%28t%29%7C%7D)
Part a
For this case we have the following function given:
![r(t) =](https://tex.z-dn.net/?f=%20r%28t%29%20%3D%20%3Ccos%285t%29%2C%20sin%285t%29%3E)
The derivate is given by:
![r'(t) =](https://tex.z-dn.net/?f=%20r%27%28t%29%20%3D%20%3C-5%20sin%285t%29%2C%205cos%285t%29%3E)
The magnitude for the derivate is given by:
![|r'(t)| = \sqrt{25 sin^2(5t) +25 cos^2 (5t)}= 5\sqrt{cos^2 (5t) + sin^2 (5t)} =5](https://tex.z-dn.net/?f=%20%7Cr%27%28t%29%7C%20%3D%20%5Csqrt%7B25%20sin%5E2%285t%29%20%2B25%20cos%5E2%20%285t%29%7D%3D%205%5Csqrt%7Bcos%5E2%20%285t%29%20%2B%20sin%5E2%20%285t%29%7D%20%3D5)
And then the tangent vector for this case would be:
![T(t) = \frac{}{5}=](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7B%3C-5%20sin%285t%29%2C%205cos%285t%29%3E%7D%7B5%7D%3D%20%3C-sin%285t%29%2C%20cos%285t%29%3E)
And for the case when t=4 we got:
![T(4) =](https://tex.z-dn.net/?f=%20T%284%29%20%3D%20%3C-sin%2820%29%2C%20cos%2820%29%3E)
Part b
For this case we have the following function given:
![r(t) =](https://tex.z-dn.net/?f=%20r%28t%29%20%3D%20%3Ct%5E2%2C%20t%5E3%3E)
The derivate is given by:
![r'(t) =](https://tex.z-dn.net/?f=%20r%27%28t%29%20%3D%20%3C2t%2C%203t%5E2%3E)
The magnitude for the derivate is given by:
![|r'(t)| = \sqrt{4t^2 +9t^4}= t\sqrt{4 + 9t^2}](https://tex.z-dn.net/?f=%20%7Cr%27%28t%29%7C%20%3D%20%5Csqrt%7B4t%5E2%20%2B9t%5E4%7D%3D%20t%5Csqrt%7B4%20%2B%209t%5E2%7D%20)
![|r'(4)| = \sqrt{4(4)^2 +9(4)^4}= 4\sqrt{4 + 9(4)^2} = 4\sqrt{148}= 8\sqrt{37}](https://tex.z-dn.net/?f=%20%7Cr%27%284%29%7C%20%3D%20%5Csqrt%7B4%284%29%5E2%20%2B9%284%29%5E4%7D%3D%204%5Csqrt%7B4%20%2B%209%284%29%5E2%7D%20%3D%204%5Csqrt%7B148%7D%3D%208%5Csqrt%7B37%7D)
And then the tangent vector for this case would be:
![T(t) = \frac{}{8\sqrt{37}}](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7B%3Ct%5E2%2C%203t%5E2%3E%7D%7B8%5Csqrt%7B37%7D%7D)
And for the case when t=4 we got:
![T(4) =](https://tex.z-dn.net/?f=%20T%284%29%20%3D%20%3C%5Cfrac%7B2%5Csqrt%7B37%7D%7D%7B37%7D%2C%5Cfrac%7B6%5Csqrt%7B37%7D%7D%7B37%7D%20%3E)
Part c
For this case we have the following function given:
![r(t) =](https://tex.z-dn.net/?f=%20r%28t%29%20%3D%20%3Ce%5E%7B5t%7D%2C%20e%5E%7B-4t%7D%20%2Ct%3E)
The derivate is given by:
![r'(t) =](https://tex.z-dn.net/?f=%20r%27%28t%29%20%3D%20%3C5e%5E%7B5t%7D%2C%20-4e%5E%7B-4t%7D%2C%201%3E)
The magnitude for the derivate is given by:
![|r'(t)| = \sqrt{25e^{10t} +16e^{-8t} +1}](https://tex.z-dn.net/?f=%20%7Cr%27%28t%29%7C%20%3D%20%5Csqrt%7B25e%5E%7B10t%7D%20%2B16e%5E%7B-8t%7D%20%2B1%7D%20)
![|r'(t)| = \sqrt{25e^{10*4} +16e^{-8*4} +1} =2425825977](https://tex.z-dn.net/?f=%20%7Cr%27%28t%29%7C%20%3D%20%5Csqrt%7B25e%5E%7B10%2A4%7D%20%2B16e%5E%7B-8%2A4%7D%20%2B1%7D%20%3D2425825977%20)
And then the tangent vector for this case would be:
![T(t) = \frac{}{2425825977}](https://tex.z-dn.net/?f=%20T%28t%29%20%3D%20%5Cfrac%7B%3C5e%5E%7B5t%7D%2C%20-4e%5E%7B-4t%7D%2C%201%3E%7D%7B2425825977%7D)
And for the case when t=4 we got:
![T(4) = \frac{1}{2425825977}](https://tex.z-dn.net/?f=%20T%284%29%20%3D%20%5Cfrac%7B1%7D%7B2425825977%7D%3C5e%5E%7B50%7D%2C%20-4e%5E%7B-16%7D%2C1%20%3E)