The statement that is true about the polygons is: the opposite angles of the rectangle are supplementary, therefore, a circle can be circumscribed about the rectangle.
<h3>What is a Circumscribed Quadrilateral?</h3>
An circumscribed quadrilateral is a quadrilateral whose four side lie tangent to the circumference of a circle. The opposite angles in an inscribed quadrilateral are supplementary, that is, when added together, their sum equals 180 degrees.
From the two figures given, the opposite angles of the rectangle are supplementary, therefore, a circle can be circumscribed about the rectangle. (Option D).
Learn more about circumscribed quadrilateral on:
brainly.com/question/26690979
#SPJ1
Answer:
Step-by-step explanation:
1). Equation of a line which has slope 'm' and y-intercept as 'b' is,
y = mx + b
If slope 'm' = 1 and y-intercept 'b' = -3
Equation of the line will be,
y = x - 3
x - y = 3
2). Equation of a line having slope 'm' and passing through a point (x', y') is,
y - y' = m(x - x')
If the slope 'm' = 1 and point is (-1, 2),
The the equation of the line will be,
y - 2 = 1(x + 1)
y = x + 1 + 2
y = x + 3
x - y = -3
3). Equation of a line passing through two points
and
will be,

If this line passes through (-2, 3) and (-3, 4),

y - 3 = -1(x + 2)
y = -x - 2 + 3
y = -x + 1
x + y = 1
1. m∠1 + m∠2 = 180°
2. Definition of bisector
3. m∠1 + m∠3 = 180°
4. Substitution Property of Equality
Sender would be 4 x 7 divided by 15