Answer:
74%
Step-by-step explanation:
First, you need to use fraction by dividing like 11 divide by 15 and then turn the percent to normal like this 74% to 0.74, At last, you need to comparing two and choose who is greater!
2 onea and 8 tens is a way to express it
Answer:
0.9177
Step-by-step explanation:
let us first represent the two failure modes with respect to time as follows
R₁(t) for external conditions
R₂(t) for wear out condition ( Wiebull )
Now,

where t = time in years = 1,
n = failure rate constant = 0.07
Also,

where t = time in years = 1
where Q = characteristic life in years = 10
and B = the shape parameter = 1.8
Substituting values into equation 1

Substituting values into equation 2

let the <em>system reliability </em>for a design life of one year be Rs(t)
hence,
Rs(t) = R1(t) * R2(t)
t = 1
![Rs(1) = [e^{-0.07} ] * [e^{-0.0158} ] = 0.917713](https://tex.z-dn.net/?f=Rs%281%29%20%3D%20%5Be%5E%7B-0.07%7D%20%5D%20%2A%20%5Be%5E%7B-0.0158%7D%20%5D%20%3D%200.917713)
Rs(1) = 0.9177 (approx to four decimal places)
Answer:
The average acceleration of train is 
Step-by-step explanation:
We have,
A train that slows down from 15 m/s to 8.6 m/s in 1.2 s. It means that 15 m/s is its initial velocity and 8.6 m/s is its final velocity.
It is required to find the average acceleration of the train.

The average acceleration of train is
. Negative signs shows that the train is decelerating.