The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
The pressure inside a liquid depends on the depth and the liquid's density.
Answer:

Explanation:
From the exercise we know the cannonball's <u>initial velocity</u>, the <u>angle</u> which its released with respect to the horizontal and its <u>initial height</u>

If we want to know whats the <u>y-component of velocity</u> we need to use the following formula:

Knowing that 

So, the cannonball's y-component of velocity is 
Answer:
6
Explanation:
The rate of change in this scenario corresponds to the number of inches that Ree grows every year. Basically, Ree's height can be written as a linear equation as follows:

where
x is the number of years after the first birthday
y is the height in inches
q = 27 is the height of Ree on her first birthday
m = 6 is the inches gained by Ree at each birthday
So the equation can also be rewritten as
y = 6x + 27
The upward force exerted on the board by the support is mathematically given as
Fu= 764.8 N
<h3>What is the upward force exerted on the board by the support?</h3>
Generally, the equation for is mathematically given as
Considering that the Net Force on the system is null
The weight of the children plus the weight of the board equals the upward force imposed on the support.
The upward force
Fu= 440 + 272 + 52.8 N
Fu= 764.8 N
In conclusion, he upward force exerted on the board by the support
Fu= 764.8 N
Read more about force
brainly.com/question/13191643
#SPJ1