Explanation:
(i)
O is the object and I is the image.
The image formed is enlarged and it is erect. So the magnification will be positive (+) and greater than 1.
Refer above image. 1
(ii)
O is the object and I is the image.
The image formed is diminished and erect. So the magnification will be positive (+) and less than1.
Refer above image. 2
(iii)
The image will be formed as the 2F on the other side of the lens and it will be of same of the object.
Answer:
Emergency Room or a Clinic
Explanation:
The Emergency Room if in a hospital. A Clinic may also see patients without insurance, but they're not on Emergency Room grounds.
<u>Answer;</u>
<em>Spring constant </em>
<u>Explanation;</u>
The measure of a spring’s resistance to being compressed or stretched is the <u>spring constant</u>.
- The symbol of spring constant is K, since it is a constant. From the Hooke's law,for a helical spring or any elastic material, the extension force is directly proportional to the extension provided the elastic limit is not exceeded.
- Therefore; the spring constant = Force/extension. That is; K = F/e; where k is the spring constant, F is the extension force and e is the extension.
- Spring constant depicts the resistance of the spring to compressional and stretching forces.
Answer:
like horror? or action haha
Explanation:
The breaking distance consists of two parts. The first part is the first 0.5 seconds were no breaking occurs. Given values: t time, v₀ initial velocity:
x₁ = v₀*t
The second part occurs after t = 0,5s with the given acceleration: a = - 12 m/s²
were the final velocity is zero, v = 0 and the initial velocity v₀= 16m/s:
v = a*t + v₀ = 0 => v₀ = -a*t => t = v₀/-a
x₂ = 0.5*a*t² = 0.5*v°²/a
The total breaking distance is the sum of the two parts:
x = x₁ + x₂ = v₀* t + 0.5 * v₀² / a = 16 * 0.5 + 0.5 * 16² / 12 = 8 + 10,7 = 18,7
You can use this result to calculate the remaining distance. You can use the last equation to calculate the maximum speed you could have to avoid a collision.
Use x = 39m and solve for v₀.