(√3 + √11)² + (√3 - √11)²
- (a+b)² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab
<em>Now </em><em>,</em>
(√3 + √11)² + (√3 - √11)²
(3 + 11 + 2√3√11)+ (3 +11 - 2√3√11)
14 + 2√33+ 14 - 2√33
14 + 14 = 28
Hence , The value of (√3 + √11)² + (√3 - √11)² is 28 .
Answer:

Step-by-step explanation:
The complete question in the attached figure
we have

we know that
(ab)(x) is equal to the product of a(x) and b(x)
so

Applying distributive property



This is a quadratic equation
The other expressions not produce a quadratic equation
Answer:
a) ∝A ∈ W
so by subspace, W is subspace of 3 × 3 matrix
b) therefore Basis of W is
={
}
Step-by-step explanation:
Given the data in the question;
W = { A| Air Skew symmetric matrix}
= {A | A = -A^T }
A ; O⁻ = -O⁻^T O⁻ : Zero mstrix
O⁻ ∈ W
now let A, B ∈ W
A = -A^T B = -B^T
(A+B)^T = A^T + B^T
= -A - B
- ( A + B )
⇒ A + B = -( A + B)^T
∴ A + B ∈ W.
∝ ∈ | R
(∝.A)^T = ∝A^T
= ∝( -A)
= -( ∝A)
(∝A) = -( ∝A)^T
∴ ∝A ∈ W
so by subspace, W is subspace of 3 × 3 matrix
A ∈ W
A = -AT
A = ![\left[\begin{array}{ccc}o&a&b\\-a&o&c\\-b&-c&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Do%26a%26b%5C%5C-a%26o%26c%5C%5C-b%26-c%260%5Cend%7Barray%7D%5Cright%5D)
=
![+c\left[\begin{array}{ccc}0&0&0\\0&0&1\\0&-1&0\end{array}\right]](https://tex.z-dn.net/?f=%2Bc%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%260%5C%5C0%260%261%5C%5C0%26-1%260%5Cend%7Barray%7D%5Cright%5D)
therefore Basis of W is
={
}
Answer:
2c exponent 4 d exponent 4
Answer:
I think you're SOL there buddy
Step-by-step explanation: