Answer:
Transition Element
Explanation:
Transition elements are defined as those elements which can form at least one stable ion and has partially filled d-orbitals. They are also characterized by forming complex compounds and having different oxidation states for a single metal element.
Transition metals are present between the metals and the non metals in the periodic table occupying groups from 3 to 12. There general electronic configuration is as follow,
(n-1)d
¹⁻¹⁰ns
¹⁻²
The general configuration shows that for a given metal, the d sublevel will be in lower energy level as compared to corresponding s sublevel. For example,
Scandium is present in fourth period hence, its s sublevel is present in 4rth energy level so its d sublevel will be present in 3rd energy level respectively.
Hence, we can conclude that for transition metals the electron are present in highest occupied s sublevel and a nearby d sublevel
.
I can only find 2, I hope this helps
-To deliver oxygen to the cells of the body's tissues and remove carbon dioxide.
- The lungs also remove carbon dioxide from the blood. If carbon dioxide built up in a body, death would result.
Answer:
Results
The percent error between 20 and 20.5 is 2.5%
Explanation:
Percent Error = | (20.5 − 20) / 20 | × 100 = | (0.5) / 20 | × 100 = | 0.025 | × 100 = 2.5% (three decimal places)Percent Error = 2.5%
The correct answer is<span> C) Water takes long to heat and cool down than other liquids.
It doesn't climb up the sides of a tube any more than other solutions do, and being a universal solvent has nothing to do with radiators. It does however take a long time to heat and cool down since you don't have a 100+ celsius burner to heat it up in an instant.</span>
Answer:
Hi, the question is incomplete. However, the question is about the calculation of volume of a product when the volume of one of the reactants is provided.
9.587 cm^3
Explanation:
The balanced equation for the chemical reaction is shown below:
⇒
In the chemical reaction above, 2 moles of water produced 4 moles of hydrogen fluoride. If 4.8 cm^3 of water were consumed, we can calculated the volume of hydrogen fluoride that would be produced as follow:
Using STP, 1 mole of gas has a volume of 22.4 L
Thus, 4.8 cm^3 = 0.0048 L is equivalent to 2.14*10^-4
since 2 moles of water produced 4 moles of hydrogen fluoride, therefore, 2.14*10^-4 would produced 2*2.14*10^-4 = 4.28*10^-4 moles
we can convert the moles to L by multiplying with 22.4
volume of hydrogen fluoride = 4.28*10^-4 * 22.4 = 0.009587 L = 9.587 cm^3