<span>⢀⢀⢀⢀⢀⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣄⢀⠠⡀
⢀⢀⢀⢀⣠⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⣤⣙⣿⣿⣾⣷⣄
⢀⢀⢀⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⡄
⢀⢀⠜⣿⠙⣹⡻⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄
⢀⢀⣰⣿⢠⣿⣇⣶⣿⣿⣿⣿⣿⣿⣿⡟⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⢀⢀⢀⢀
⢰⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⢀⢀⠍⠙⢿⡟⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣄⣴⣾⠃
⣿⣿⣿⣿⣿⣿⣿⠹⣿⣿⣿⣿⣿⣿⣿⠁⠈⢀⡤⢲⣾⣗⠲⣿⣿⣿⣿⣿⣿⣟⠻⢿⣿⣿⡿⠃
⡿⣿⣿⣿⣿⣿⣿⡀⢙⣿⣿⣿⣿⣿⣿⢀⠰⠁⢰⣾⣿⣿⡇⢀⣿⣿⣿⣿⣿⣿⡄⠈⢿⣿⣿⣿⣦⣄⡀
⡇⢻⣿⣿⣿⣿⢿⣇⢀⢀⠙⠷⣍⠛⠛⢀⢀⢀⢀⠙⠋⠉⢀⢀⢸⣿⣿⣿⣿⣿⣷⢀⡟⣿⣿⣿⣿⣿⣟⠦
⠰⢀⠻⣿⣿⣿⣧⡙⠆⢀⣀⠤⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢸⣿⣿⣿⣿⣿⣿⢿⣧⢸⢻⣿⣿⠿⢿⡆⠁⠠⠠
⢀⢀⢀⠈⢿⣿⣿⣷⣖⠋⠁⢀⢀⢀⢀⢀⢀⣀⣀⣄⢀⢀⢀⢀⢸⠏⣿⣿⣿⢿⣿⢸⣿⣆⢀⢻⣿⣆⢀⢀⢀⢀⢀⣀⡀
⢀⢀⢀⢀⠈⣿⣿⣿⣷⡀⢀⢀⢀⢀⢀⡒⠉⠉⢀⢀⢀⢀⢀⢀⢈⣴⣿⣿⡿⢀⡿⢀⢻⣿⣆⡈⣿⣿⠂⢀⢀⢀⢸⣿⢀⢀⢀⢀⢀
⢀⢀⢀⢀⢀⠘⣿⣿⣿⣷⣄⢀⢀⢀⢀⠐⠄⢀⢀⢀⠈⢀⣀⣴⣿⣿⣿⡿⠁⢀⣡⣶⣿⣿⣿⣿⣿⣯⣄⢀⢀⢀⢸⣿⢀⢀⢀⢀⠐⣠⣾
⢀⢀⢀⢀⢀⢀⢹⠻⣿⣿⣿⣿⣆⠢⣤⣄⢀⢀⣀⠠⢴⣾⣿⣿⡿⢋⠟⢡⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⡄⣿⣿⢂⠐⢀⣤⡾⡟⠁
⢀⢀⢀⢀⢀⢀⠸⢀⠘⠿⣿⣿⣿⣦⣹⣿⣀⣀⣀⣀⠘⠛⠋⠁⡀⣄⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢀⣿⣿⣴⣾⣿⣭⣄⢀⢀
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠈⠛⣽⣿⣿⣿⣿⣿⣿⠁⢀⢀⢀⣡⣾⣿⣿⣿⡟⣹⣿⣿⣿⣿⣿⣿⣿⣿⣿⠏⢀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣶
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢰⣿⣿⣿⣿⣿⣿⣿⣦⣤⣶⣿⡿⢛⢿⡇⠟⠰⣿⣿⣿⣿⣿⣿⣿⣿⣿⠁⢀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⣿⣿⣿⡿⢉⣭⢭⠏⣿⡿⢸⡏⣼⣿⢴⡇⢸⣿⣶⣿⣿⣿⣿⣿⣿⣿⠇⢀⢀⣿⣿⣿⣿⡿⢿⣿⣿⡿⠟⠁
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢰⣿⣿⣿⢃⣶⣶⡏⠸⠟⣱⣿⣧⣛⣣⢾⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠈⢀⢀⡼⠉⠉⠉⠁⢀⢀⢀⢀⢀⢀⢀
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⣾⣿⣿⣿⣾⣿⣿⠟⢻⡿⡉⣷⣬⡛⣵⣿⣿⣿⣿⣿⣿⣿⣿⣿⡯⢀⢀⠴⠋
⢀⢀⢀⢀⢀⢀⢀⢀⢀⣸⣿⣿⣿⣿⣿⣿⡿⢰⠘⣰⣇⣿⣿⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃
⢀⢀⢀⢀⢀⢀⢀⢀⢀⠘⢿⣿⣿⣿⣿⣿⡷⢺⣿⠟⣩⣭⣽⣇⠲⠶⣿⣿⣿⣿⣿⣿⣿⠃
⢀⢀⢀⢀⢀⢀⢀⢀⠐⢀⣾⣿⣿⣿⣿⠟⢐⡈⣿⣷⣶⠎⣹⡟⠟⣛⣸⣿⣿⣿⣿⣿⣿
⢀⢀⢀⢀⢀⢀⢀⠠⢀⣼⣿⣿⣿⣿⣯⣼⣿⣷⣿⣷⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⢀⢀⢀⢀⢀⢀⢀⠐⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⢀⢀⢀⢀⢀⢀⢀⢀⠂⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡀
⢀⢀⢀⢀⢀⢀⢀⢀⠈⠼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⡄
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠹⠉⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠓⣀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠄⡠⣹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠋⠉⠛⢦
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠛⠉⢀⢀⢀⢀⢀⢀⠁⡀
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⡿⠟⠁⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠐
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠈⠙⠻⠿⢿⣿⣿⣿⣿⣿⡿⣿⡟⣿⠹⣮⣿⠁⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠠
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠉⢀⠛⠳⢾⣷⣾⣿⣹⣿⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢧
⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢹⣿⣿⣇⢻⡀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⠘⡆</span>
Answer:
a-1) Pv = 52549
a-2) Pv = 56822
b-1) Fv = 77570
b-2 Fv = 83878
Explanation:
b-1) Future value:
S= Sum of amount of annuity=?
n=number of fixed periods=5 years
R=Fixed regular payments=13200
i=Compound interest rate= .081 (suppose annualy)
we know that ordinary annuity:
S= R [(1+i)∧n-1)]/i
= 13200[(1+.081)∧5-1]/.081
=13200(1.476-1)/.081
= 13200 * 5.8765
S = 77570
a.1)Present value of ordinary annuity:
Formula: Present value = C* [(1-(1+i)∧-n)]/i
=13200 * [(1-(1+.081)∧-5]/.081
=13200 * (1-.6774)/.081
=13200 * (.3225/.081)
=52549
a.2)Present value of ordinary Due:
Formula : Present value = C * [(1-(1+i)∧-n)]/i * (1+i)
= 13200 * [(1- (1+.081)∧-5)/.081 * (1+.081)
= 13200 * 3.9822 * 1.081
= 56822
b-2) Future value=?
we know that: S= R [(1+i)∧n+1)-1]/i ] -R
= 13200[ [ (1+.081)∧ 5+1 ]-1/.081] - 13200
= 13200 (.5957/.081) -13200
= (13200 * 7.3544)-13200
= 97078 - 13200
= 83878
Answer:
$103,400
Explanation:
Does Manuel have any certainties that Nolan will purchase more than 30,000 units during the year? Apparently, according to historic sales, Nolan purchases at least 40,000 units per year, so Manuel should consider that Nolan will again purchase a similar amount this year and therefore, will be entitled to a rebate.
Another issue that must be considered is that 30,000 units / 4 quarters = 7,500 units per quarter, and Nolan clearly purchased more than that.
A rebate is not a discount, it happens when the seller offers a certain amount of goods to a buyer without cost because the buyer purchased more than an specific amount. It is basically an incentive or prize that Manuel gives Nolan for being a good client.
Manuel should recognize $110,000 x (1 - 6%) = $103,400 in revenues
A reflex response to the passage of electric current through the human body and results when electric current enters the body at one point and leaves through another.
in this case, identical changes in autonomous consumption and autonomous government spending: <span> have different effects on equilibrium income
When a factor is implemented and have two different reaction, it is safe to assume that that factor have two different effects.
For example, an increasing interest in technology(autonomous consumption) may increased the investment for tech products. The government spending may not give as much influence in this context because it wont affect the transaction between the customers and the producer
</span>