Half life formula
The number of unstable nuclei remaining after time t can be determined according to this equation:
N(t) = N(0) * 0.5^(t/T)
where:
N(t) is the remaining quantity of a substance after time t has elapsed.
N(0) is the initial quantity of this substance.
T is the half-life.
It is also possible to determine the remaining quantity of a substance using a few other parameters:
N(t) = N(0) * e^(-t/τ)
N(t) = N(0) * e^(-λt)
τ is the mean lifetime - the average amount of time a nucleus remains intact.
λ is the decay constant (rate of decay).
All three of the parameters characterizing a substance's radioactivity are related in the following way:
T = ln(2)/λ = ln(2)*τ
How to calculate the half life
Determine the initial amount of a substance. For example, N(0) = 2.5 kg.
Determine the final amount of a substance - for instance, N(t) = 2.1 kg.
Measure how long it took for that amount of material to decay. In our experiment, we observed that it took 5 minutes.
Input these values into our half life calculator. It will compute a result for you instantaneously - in this case, the half life is equal to 19.88 minutes.
If you are not certain that our calculator returned the correct result, you can always check it using the half life formula.
Answer:
The most important things for a cell are oxygen in order to respire and Glucose, also for respiration. This is used in a process called glycolysis where the cell makes a chemical called ATP which is basically our energy. ... So basically a cell needs lots to stay alive.
Explanation:
Contains and protects the cell
B. Cell wall and a central vacuole
The cell wall is a rigid structure that surrounds the cells and allows plants to stay upright. Animal cells are more fluid.
The central vacuole is a large region in the cell that stores nutrients and fluids. Many cells, including animal cells, contain vacuoles, but most are small, and only plant cells contain large central vacuoles.
Hope this helps!!