Answer: 
Step-by-step explanation:
The given regular polygon has 3 sides, therefore, it is a triangle with all sides equal and called equilateral triangle.
The area of equilateral triangle is given by:-
, where a is the side length of equilateral triangle.
Now, the area of given equilateral triangle with sides = 16 ft. is given by:-

Answer:
the answer is A=(8)(8)/2
Step-by-step explanation:
Answer:
0.01 is the awnser can you put me as the brainlest awnser
Step-by-step explanation:
Question:
Which expression is equivalent to
![\frac{\sqrt{2}}{\sqrt[3]{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D)
Answer:
![\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{6}} = \sqrt[6]{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%3D2%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D%20%3D%20%5Csqrt%5B6%5D%7B2%7D)
Step-by-step explanation:
Given
![\frac{\sqrt{2}}{\sqrt[3]{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D)
Required
Simplify
From laws of indices;
![\sqrt[n]{x} =x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%3Dx%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So, the expression can be rewritten as
![\frac{\sqrt{2}}{\sqrt[3]{2}} = \frac{{2^{\frac{1}{2}}}}{2^{\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%3D%20%5Cfrac%7B%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7D%7B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Also, from laws of indices

So, the expression is further solved to:
![\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{2} - \frac{1}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%3D2%5E%7B%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B3%7D)
Solve exponents as fraction
![\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{3-2}{6}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%3D2%5E%7B%5Cfrac%7B3-2%7D%7B6%7D%7D)
![\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{6}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%3D2%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D)
This can be rewritten as
![\frac{\sqrt{2}}{\sqrt[3]{2}} =2^{\frac{1}{6}} = \sqrt[6]{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%3D2%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D%20%3D%20%5Csqrt%5B6%5D%7B2%7D)