1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
8

Solve for n 10n+0.3=0.1+0.3

Mathematics
1 answer:
galina1969 [7]3 years ago
4 0

Answer:

0.01 is the awnser can you put me as the brainlest awnser

Step-by-step explanation:

You might be interested in
Elijah has a muffin and a banana. To find the banana's weight, Elijah uses a balance scale twice and the scale is balanced both
aleksley [76]

Answer:

the scale is balanced both times <em>as shown below</em>.

No scale is shown

Step-by-step explanation:

8 0
2 years ago
Polly's Polls asked 1850 second-year college students if they still had their original major. According to the colleges, 65% of
suter [353]

Answer:

The probability that Polly's Sample will give a result within 1% of the value 65% is 0.6424

Step-by-step explanation:

The variable that assigns the value 1 if a person had its original major and 0 otherwise is a Bernoulli variable with paramenter 0.65. Since she asked the question to 1850 people, then the number of students that will have their original major is a Binomial random variable with parameters n = 1850, p = 0.65.

Since the sample is large enough, we can use the Central Limit Theorem to approximate that random variable to a Normal random variable, which we will denote X.

The parameters of X are determined with the mean and standard deviation of the Binomal that we are approximating. The mean is np = 1850*0.65 = 1202.5, and the standard deviation is √np(1-p) = √(1202.5*0.35) = 20.5152.

We want to know the probability that X is between 0.64*1850 = 1184 and 0.66*1850 = 1221 (that is, the percentage is between 64 and 66). In order to calculate this, we standarize X so that we can work with a standard normal random variable W ≈ N(0,1). The standarization is obtained by substracting the mean from X and dividing the result by the standard deviation, in other words

W = \frac{X-\lambda}{\sigma} = \frac{X-1202.5}{20.5152}

The values of the cummulative function of the standard normal variable W, which we will denote \phi are tabulated and they can be found in the attached file.

Now, we are ready to compute the probability that X is between 1184 and 1221. Remember that, since the standard random variable is symmetric through 0, then \phi(-z) = 1-\phi(z) for each positive value z.

P(1184 < X < 1221) = P(\frac{1184-1202.5}{20.5152} < \frac{X-1202.5}{20.5152} < \frac{1221-1202.5}{20.5152})\\ = P(-0.9018 < W < 0.9018) = \phi(0.9018) - \phi(-0.9018) = \phi(0.9018)-(1-\phi(0.9018))\\ = 2\phi(0.9018)-1 = 2*0.8212-1 = 0.6424

Therefore, the probability that Polly's Sample will give a result within 1% of the value 65% is 0.6424.

Download pdf
4 0
3 years ago
What is the area of the hexagon shown below
GalinKa [24]
For you to do area it is length times width.
7 0
3 years ago
Help me find my answer
Sergeu [11.5K]

Step-by-step explanation:

3 cookies= 240 cal

∴ 1 cookie= 240÷3 cal

∴ 5 cookies= (240÷3) × 5

⇒ 240÷3= 80

⇒ 80 × 5= 400

[ans] 400 cal

4 0
3 years ago
A study of long-distance phone calls made from General Electric's corporate headquarters in Fairfield, Connecticut, revealed the
Jet001 [13]

Answer:

a) 0.4332 = 43.32% of the calls last between 3.6 and 4.2 minutes

b) 0.0668 = 6.68% of the calls last more than 4.2 minutes

c) 0.0666 = 6.66% of the calls last between 4.2 and 5 minutes

d) 0.9330 = 93.30% of the calls last between 3 and 5 minutes

e) They last at least 4.3 minutes

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 3.6, \sigma = 0.4

(a) What fraction of the calls last between 3.6 and 4.2 minutes?

This is the pvalue of Z when X = 4.2 subtracted by the pvalue of Z when X = 3.6.

X = 4.2

Z = \frac{X - \mu}{\sigma}

Z = \frac{4.2 - 3.6}{0.4}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

X = 3.6

Z = \frac{X - \mu}{\sigma}

Z = \frac{3.6 - 3.6}{0.4}

Z = 0

Z = 0 has a pvalue of 0.5

0.9332 - 0.5 = 0.4332

0.4332 = 43.32% of the calls last between 3.6 and 4.2 minutes

(b) What fraction of the calls last more than 4.2 minutes?

This is 1 subtracted by the pvalue of Z when X = 4.2. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{4.2 - 3.6}{0.4}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

1 - 0.9332 = 0.0668

0.0668 = 6.68% of the calls last more than 4.2 minutes

(c) What fraction of the calls last between 4.2 and 5 minutes?

This is the pvalue of Z when X = 5 subtracted by the pvalue of Z when X = 4.2. So

X = 5

Z = \frac{X - \mu}{\sigma}

Z = \frac{5 - 3.6}{0.4}

Z = 3.5

Z = 3.5 has a pvalue of 0.9998

X = 4.2

Z = \frac{X - \mu}{\sigma}

Z = \frac{4.2 - 3.6}{0.4}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

0.9998 - 0.9332 = 0.0666

0.0666 = 6.66% of the calls last between 4.2 and 5 minutes

(d) What fraction of the calls last between 3 and 5 minutes?

This is the pvalue of Z when X = 5 subtracted by the pvalue of Z when X = 3.

X = 5

Z = \frac{X - \mu}{\sigma}

Z = \frac{5 - 3.6}{0.4}

Z = 3.5

Z = 3.5 has a pvalue of 0.9998

X = 3

Z = \frac{X - \mu}{\sigma}

Z = \frac{3 - 3.6}{0.4}

Z = -1.5

Z = -1.5 has a pvalue of 0.0668

0.9998 - 0.0668 = 0.9330

0.9330 = 93.30% of the calls last between 3 and 5 minutes

(e) As part of her report to the president, the director of communications would like to report the length of the longest (in duration) 4% of the calls. What is this time?

At least X minutes

X is the 100-4 = 96th percentile, which is found when Z has a pvalue of 0.96. So X when Z = 1.75.

Z = \frac{X - \mu}{\sigma}

1.75 = \frac{X - 3.6}{0.4}

X - 3.6 = 0.4*1.75

X = 4.3

They last at least 4.3 minutes

7 0
3 years ago
Other questions:
  • What are two decimals whose product is close to 10
    5·2 answers
  • 1. Manufacturing Process Incorporation plan to produce a new ergonomic chair. Before the company starts producing this chair the
    8·1 answer
  • someone plz help me. with promblems above extrax points. i will mark brainliest the first answer and the one that is expalined
    10·1 answer
  • What is the slope of the line?
    15·2 answers
  • Please help me, it’s asking what the constant rate of change, if it’s possible.
    12·1 answer
  • What is the equation of this line?<br> A. y = 3/2x<br> B. y = -3/2x<br> C. y = 2/3x<br> D. y = -2/3x
    11·2 answers
  • PLEASE HELP ME. this is due TONIGHT and i need this done so i have time for other assignments. thank you so much
    8·2 answers
  • Jack bought a mug for 10$ and then sold it and got 20% profit. how much did jack sell his mug for?
    9·2 answers
  • 10. Your bedroom ceiling is 10 feet high and is 2 times as high as the living room ceiling. Write and solve an equation with one
    7·1 answer
  • The graph of quadratic function g is shown on the grid. the coordinates of the x-intercepts, the y-intercept, and the vertex are
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!