Answer:
2.58 x 10⁸ m/s
Explanation:
Time dilation fomula will be applicable here, which is given below.
t = \frac{T}{\left ( 1-\frac{v^2}{c^2} \right )^\frac{1}{2}}
Where T is dilated time or time observed by clock in motion , t is stationary time , v is velocity of clock in motion and c is velocity of light .
c is 3 times 10⁸ ms⁻¹ , T is 7.24 h , t is 3.69 h. Put these values in the formula
7.24 = \frac{3.69}{\left ( 1-\frac{v^2}{c^2} \right )^\frac{1}{2}}\\
\frac{v^2}{c^2}=0.744\\\\
v=2.58\times 10^8
Answer:
5 seconds
Explanation:
sound travels 1 km in roughly 3 secs so 1 mile in roughly 5 secs.
The ideal gas law allows a scientist to calculate the number of moles that the other gas laws do not. The ideal gas law is given as
P V = n RT
rearranging the equation by dividing both side by "RT", we get
PV/(RT) = nRT/(RT)
n = PV/(RT)
inserting the values of pressure, volume and temperature, we get number of moles.
Density = (mass) / (volume), no matter how large or small the sample is.
We can't calculate the density, because you left out the number for the volume.
Also, you didn't tell us the unit for the mass of 180.
a). If the mass is 180 grams, then the density is
(180 gm) / (volume) .
b). No matter how many pieces you crush it into, and
no matter how large or small a piece is, its density is
the same. (I just wish we knew what the density really is.)
c). A piece may have 80 grams of mass. It doesn't "weigh" 80 grams.
Since the density of the whole rock is (180 gm) / (volume),
the density of any piece of it is (180 gm) / (volume).
Multiply each side by (volume): (Density) x (volume) = 180 gm
Divide each side by (density): Volume = (180 gm) / (density)
We can't calculate the volume of an 80-gm piece, because
we don't know the density. (That's because you left the volume
out of the question.)
M=meter, km=kilometer, mm=millimeter, mg=micrometer, cm=centimeter