Present value of annuity PV = P(1 - (1 + r/t)^-nt) / (r/t)
where: p is the monthly payment, r is the APR = 14.12% = 0.1412, t is the number of payments in one year = 12, n is the number of years = 2.
1,120.87 = P(1 - (1 + 0.1412/12)^(-2 x 12)) / (0.1412 / 12)
0.1412(1120.87) = 12P(1 - (1 + 0.1412/12)^-24)
P = 0.1412(1120.87) / 12(1 - (1 + 0.1412/12)^-24) = $53.88
Minimum monthly payment = 3.15% of 1120.87(1 + 0.1412/12) = 0.0315 x 1120.87(1 + 0.1412/12) = $35.72
Therefore, his first payment will be greater than the minimum payment by 53.88 - 35.72 = $18.16
Answer:
112.03sq. units
Step-by-step explanation:
The area of a sector = theta/360 * πr²
The area of a sector = 76/360 * 3.14 * 13²
The area of a sector = 76/360 * 530.66
The area of a sector = 40,330.16/360
The area of a sector = 112.03sq. units
This gives the area of the sector
Just multiply all them together for volume, 468 ft ^3
Answer:
When n=3 and x=−2 the answer is 11.
Step-by-step explanation:
Given:
Let p (n,x) be the function such that

To Find:
p (n,x) = p ( 3, -2) = ?
Solution:

Substituting n = 3 and x = -2 we get

Negative square gives positive number therefore (-2)²=4


When n=3 and x=−2 the answer is 11.
The rectangle has a perimeter P of 58 inches.The length l is one more than 3 times the width w.write and solve a system of linear equations to find the length and width of the rectangle?
Answer:
Length(L)=22 inches
Width(W) = 7 inches
Step-by-step explanation:
GIven:-
Perimeter (p)=58 inches,
Length(L)= one more than 3 times the width(W)
Let, W=x ---------------------------------(equation 1
-----------------------(equation 2)
Here x is unknown and to find the Width(W) we have to find the value of x.
Now,
Perimeter of rectangle(p) = 2 times length(L) + 2 times width(W)

----------------(from equation 1)
----------------(given p=58 inches)




----------------------(equation 3)
Now substituting the value of equation 3 in equation 2.





as,
-----------------------(from equation 1)
inches -------------------(equation 3)
Therefore, Length(L) = 22 inches and Width(W) = 7 inches.