Answer:
Temperature measures the average kinetic energy of the particles in a substance. Thermal energy measures the total kinetic energy of the particles in a substance. The greater the motion of particles, the higher a substance's temperature and thermal energy.
Explanation:
Answer is: A) 7.84 g.
V(Mg(NO₃)₂) = 151 mL ÷ 1000 mL/L.
V(Mg(NO₃)₂) = 0.151 L; volume of the magnesium nitrate.
c(Mg(NO₃)₂) = 0.352 M; molarity of the solution.
n(Mg(NO₃)₂) = V(Mg(NO₃)₂) · c(Mg(NO₃)₂).
n(Mg(NO₃)₂) ) = 0.151 L · 0.352 mol/L.
n(Mg(NO₃)₂) = 0.0531 mol; amount of the substance.
M(Mg(NO₃)₂) = Ar(Mg) + 2Ar(N) + 6Ar(O) · g/mol.
M(Mg(NO₃)₂) = 24.3 + 2·14 + 6·16 · g/mol.
M(Mg(NO₃)₂) = 148.3 g/mol; molar mass.
m(Mg(NO₃)₂) = n(Mg(NO₃)₂) · M(Mg(NO₃)₂).
m(Mg(NO₃)₂) = 0.0531 mol · 148.3 g/mol.
m(Mg(NO₃)₂) = 7.84; mass of magnesium nitrate.
Answer:humans have put ridiculous amounts of carbon dioxide into the atmosphereThese events are linked to the mass burning of fossil fuels to meet an increase in human demand
So the answer is True
Explanation:
Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).