Answer:
The population is not following the Hardy-Weinberg equilibrium.
Explanation:
Hardy-Weinberg proposed that the population will remain in the equilibrium if they are not affected with the external natural force like genetic drift, mutation and many others. The gene pool of a population will remain in equilibrium state for generations.
The mathematical expression for the Hardy-Weinberg are
Genotypic frequency is p²+q²+2pq=1
Allele frequency is p+q=1
where p-dominant allele,
q-recessive allele
Therefore,calculating expected frequency of allele q,
q² (recessive genotype)- q²+2pq/1000
= 22+188/1000
=210/1000
= 0.21
q= 0.45
Calculating expected frequency of allele p,
Using p+q=1
p=1-q
p= 0.55 (expected)
Calculating observed value of frequency of p,
p²= p²+2pq/1000
= 790+188/1000
= 978/1000
= 0.978
p = 0.988 (observed)
Since the expected frequency does not match the observed frequency therefore the population is not under the Hardy-Weinberg equilibrium and the gene pool is disturbed.
Answer:
(2)
Explanation:
Because the genetic material in these cells is going to be some of the genetic material of the offspring.
They have specialized legs, skin, feet, eyes, and bodies thats why they primarily live in water but can live on land as well <span />