1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
14

The joint probability density function of X and Y is given by fX,Y (x, y) = ( 6 7 x 2 + xy 2 if 0 < x < 1, 0 < y < 2

0 otherwise. (a) Verify that this is indeed a joint density function. (b) Compute the density function of X. (c) Find P(X > Y ). (d) Find P(Y > 1/2 | X < 1/2). (e) Find E(X). (f) Find E(Y
Mathematics
1 answer:
fredd [130]3 years ago
5 0

I'm going to assume the joint density function is

f_{X,Y}(x,y)=\begin{cases}\frac67(x^2+\frac{xy}2\right)&\text{for }0

a. In order for f_{X,Y} to be a proper probability density function, the integral over its support must be 1.

\displaystyle\int_0^2\int_0^1\frac67\left(x^2+\frac{xy}2\right)\,\mathrm dx\,\mathrm dy=\frac67\int_0^2\left(\frac13+\frac y4\right)\,\mathrm dy=1



b. You get the marginal density f_X by integrating the joint density over all possible values of Y:

f_X(x)=\displaystyle\int_0^2f_{X,Y}(x,y)\,\mathrm dy=\boxed{\begin{cases}\frac67(2x^2+x)&\text{for }0

c. We have

P(X>Y)=\displaystyle\int_0^1\int_0^xf_{X,Y}(x,y)\,\mathrm dy\,\mathrm dx=\int_0^1\frac{15}{14}x^3\,\mathrm dx=\boxed{\frac{15}{56}}

d. We have

\displaystyle P\left(X

and by definition of conditional probability,

P\left(Y>\dfrac12\mid X\frac12\text{ and }X

\displaystyle=\dfrac{28}5\int_{1/2}^2\int_0^{1/2}f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=\boxed{\frac{69}{80}}

e. We can find the expectation of X using the marginal distribution found earlier.

E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}

f. This part is cut off, but if you're supposed to find the expectation of Y, there are several ways to do so.

  • Compute the marginal density of Y, then directly compute the expected value.

f_Y(y)=\displaystyle\int_0^1f_{X,Y}(x,y)\,\mathrm dx=\begin{cases}\frac1{14}(4+3y)&\text{for }0

\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87

  • Compute the conditional density of Y given X=x, then use the law of total expectation.

f_{Y\mid X}(y\mid x)=\dfrac{f_{X,Y}(x,y)}{f_X(x)}=\begin{cases}\frac{2x+y}{4x+2}&\text{for }0

The law of total expectation says

E[Y]=E[E[Y\mid X]]

We have

E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}

\implies E[Y\mid X]=1+\dfrac1{6X+3}

This random variable is undefined only when X=-\frac12 which is outside the support of f_X, so we have

E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87

You might be interested in
The population of a town is 500,000 in 1990. The population increases at a rate of 5% every five years. What will be the approxi
SVETLANKA909090 [29]
A = P(1+r)^(t/5) A = 500000(1+0.05)^(15/5) A = 500000(1.05)^(15/5) A = 500000(1.05)^3 A = 500000*1.157625 A = 578812.5 Telling us that the population will be about 578,812 people in the year 2005
5 0
3 years ago
The sample space for a roll of two number cubes is shown in the table.
katen-ka-za [31]
I think its C but I'm not 100% sure
5 0
3 years ago
Read 2 more answers
An ant walks 30 feet in 6 minutes.How long would it take the ant to walk 35 yards
pentagon [3]
You need to multiply 30 by 6 so 30times6 =your answer
4 0
3 years ago
Use the formula for a cylinder r=4 h=8 v?
zzz [600]

Answer:

\large\boxed{V=128\pi\approx401.92}

Step-by-step explanation:

The formula of a volume of a cylinder:

V=\pi r^2h

We have r = 4 and h = 8:

V=\pi(4^2)(8)=\pi(16)(8)=128\pi

\pi\approx3.14\to V\approx(128)(3.14)=401.92

4 0
3 years ago
Steven has $25 dollars to spend. He spent $10.81, including tax, to buy a new DVD. He needs to save $10.00 but he wants to buy a
Yuliya22 [10]

(25 - 10.81) - 1.38p = 10

p = package of peanuts  

25 - 10.81 = 14.19

14.19 - 1.38p = 10

Subtract 14.19 from each side

10 - 14.19 = -4.19

-1.38p = -4.19

Divide both sides by -1.38

p = 3 (roughly, but because you can only buy the whole package, this is the amount you can buy)

He can buy a maximum of 3 packages of peanuts.

6 0
2 years ago
Other questions:
  • Find the value of the variable if P is between J &amp; K.
    15·1 answer
  • Multiply the polynomials (a^2+3a-7) and (a+4)<br> simplify answer + show work
    14·1 answer
  • If I have 18$ and $27 if I multiply it what would the answer be
    11·2 answers
  • Please hurry! I'm so confused
    5·1 answer
  • 2) Key components of financial planning include all of the following except:
    11·1 answer
  • What will be be the unit digit of sqaure of 374 pls explain <br>I will give you brainlist​
    10·1 answer
  • F(x)=x-2; translation 5 units left
    5·1 answer
  • The vertices of triangle JKL are J(–2, 3), K(1, 6), and L(3, –2). Which type of triangle best describes triangle JKL
    5·1 answer
  • Can someone please help me with this
    10·1 answer
  • Solve for x. Round to the nearest tenth, if necessary.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!