If s is the side of the square base, the area of the square base is s^2.
The volume of the square base is,
V = (s²) (h)
s² = V/h
s² = 3n³ + 13n² + 16n + 4 / <span>3n + 1
You can do this division by factoring, synthetic division, or by plain division.
Factoring out 3n + 1 from the numerator gives you:
</span>s² = (3n + 1)(n² + 4n + 4) / 3n+1
s² = n² + 4n + 4
Therefore, the area of the square base is <span>n² + 4n + 4.</span>
Answer:
2
Step-by-step explanation:
So I'm going to use vieta's formula.
Let u and v the zeros of the given quadratic in ax^2+bx+c form.
By vieta's formula:
1) u+v=-b/a
2) uv=c/a
We are also given not by the formula but by this problem:
3) u+v=uv
If we plug 1) and 2) into 3) we get:
-b/a=c/a
Multiply both sides by a:
-b=c
Here we have:
a=3
b=-(3k-2)
c=-(k-6)
So we are solving
-b=c for k:
3k-2=-(k-6)
Distribute:
3k-2=-k+6
Add k on both sides:
4k-2=6
Add 2 on both side:
4k=8
Divide both sides by 4:
k=2
Let's check:
:


I'm going to solve
for x using the quadratic formula:







Let's see if uv=u+v holds.

Keep in mind you are multiplying conjugates:



Let's see what u+v is now:


We have confirmed uv=u+v for k=2.
:):(:(:):)(:(:$:):(:(:(:):)3():):);;
The answer is 0.15290519877
Answer:
<h2><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>135</u></em><em><u>°</u></em></h2>
Step-by-step explanation:
<em><u>According</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>problem</u></em><em><u>, </u></em>
45° + x = 180° <em>[</em><em>Linear</em><em> </em><em>pair</em><em>]</em>
=> x = 180° - 45°
=> <em><u>x = 135° (Ans)</u></em>