Answer:
I would say everything's correct except the second one, I believe that one is false :) I hope you do well and sorry if i'm wrong!
Explanation:
Answer:
In biology, a gene is a basic unit of heredity and a sequence of nucleotides in DNA or RNA that encodes the synthesis of a gene product, either RNA or protein. During gene expression, the DNA is first copied into RNA.
Euchromatin is a lightly packed form of chromatin that is enriched in genes, and is often under active transcription. Euchromatin comprises the most active portion of the genome within the cell nucleus. 92% of the human genome is euchromatic.
The genes present in heterochromatin are usually inactive. The genes present in euchromatin are either already active or will be active during growth. Heterochromatin is transcriptionally-inactive. Euchromatin is transcriptionally. (This one here is the difference)
Organic molecules can form in a reducing atmosphere. Good luck.
Answer:
A mutation can alter the structure/function of a particular protein, thereby also altering the phenotype resulting from this new variant
Explanation:
A mutation can be defined as a genetic change in the genome of an organism. Some mutations are capable of modifying the expression and/or structure of the proteins, while other mutations (known as silent mutations) have no effect on the resulting proteins. When mutations occur within the gene region encoding a protein (i.e., exons), they are potentially capable of producing a faulty protein. For example, a mutation can alter the Open Reading Frame (ORF) of the resulting protein, thereby inactivating it. The mutations that alter the structure and/or function of the protein can also alter the resulting phenotype associated with the expression of this protein. For example, a mutation within a gene that encodes a key enzyme can potentially alter the binding site of the protein, so the resulting mutated enzyme cannot bind to the substrate anymore. In consequence, this mutation alters the phenotype of the individual who is not more able to carry out the metabolic reaction catalyzed by the faulty enzyme.