1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr_godi [17]
4 years ago
11

A cube shaped tissue box is made entirely of cardboard. The tissue box has a length of 5 in.

Mathematics
2 answers:
Arisa [49]4 years ago
6 0
Since no further dimensions are given, I assume that the question is asking for the surface area of the box.

A=6a^{2}
A=6(25)
A=150in^{2} of cardboard. 
Daniel [21]4 years ago
5 0
A cube has equal length, height and depth.

The area of one face is 5inches * 5inches, which would equal 25inches^2.

Multiply this by 6, for the 6 faces on a cube, and we get 150inches^2 of cardboard.
You might be interested in
Determine whether the sequence converges or diverges. If it converges, give the limit.
azamat
The term to term rule is multiplying by 4 and if we continue doing this, we will move towards very large positive numbers.

This sequence, therefore, diverges to infinity
4 0
4 years ago
During a sale, a store offered a 40% discount on a tablet that originally sold for $760.
elena-s [515]

Answer:

304

Step-by-step explanation: x/760 40/100=

760x40=30,400

30,400 divided by 100=304

7 0
3 years ago
How many solutions does the system of equations have?
statuscvo [17]
5x - 20y = 60...reduce by dividing by 5
x - 4y = 12
this is the same as the other equation....therefore, it is the same line...meaning infinite solutions
=============
y - 7x = -14
y = 7x - 14.....slope = 7, y int = -14

7y - 49x = -2
7y = 49x - 2
y = 7x - 2/7.....slope is 7, y int is -2/7

if the slopes are the same, but the y int are different, then u have a parallel lines with no solutions
5 0
4 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
The regular price of an item at a store is p dollars. The items is on sale for 10% off the regular price. Some of the expression
Stolb23 [73]

Answer:

<u><em>C,   </em></u>  Expression B and Expression D

Step-by-step explanation:

<h2><u><em>Step 1 : Analyzing the question:</em></u></h2>

The regular price of an item at a store is p dollars. The items is

on sale for 10% off the regular price. Some of the expressions

below represent the sale price, in dollars, of the item.

It says  " <em>item on sale for 10% off </em>". That means p-0.1p  or  0.9p.

<h2><u><em>Step 2 : Looking at the next portion of the question:</em></u></h2>

Expression A: 0.1p

Expression B: 0.9p

Expression C: 1 - 0.1p

Expression D: p - 0.1p

Expression E: p - 0.0p

<u>Expression A</u> doesn't make any sense. It only shows the how

much you save

<h3><em><u>Expression B:</u></em>   This is one of the answer. </h3><h3 /><h3>p-0.1p=0.9p</h3><h3 />

<u>Expression C: </u>  You can't subtract 0.1p from 1

<h3><em><u>Expression D: </u></em>  D makes sense.p-0.1p=0.9p</h3><h3 />

<u>Expression E: </u>   This is the same thing as p

<h2><u><em>Step 3: The answers:</em></u></h2>

<u><em>The answer is C .</em></u>

5 0
3 years ago
Other questions:
  • What is GCF of 12,30,72
    13·1 answer
  • What are two possible FIRST STEPS to solve the equation below?<br> 3(x-5)=21
    15·1 answer
  • 6 cakes cost £6.30. how much does 5 cakes cost?
    14·2 answers
  • A cell phone provider offers a plan that costs ​$40 per month plus ​$0.20 per text message sent or received. A comparable plan c
    7·2 answers
  • Geometry! Please help!!
    14·1 answer
  • Assume the resting heart rates for a sample of individuals are normally distributed with a mean of 75 and a standard deviation o
    14·1 answer
  • In 1990, the cost of tuition at a large Midwestern university was $99 per credit hour. In 2003, tuition had risen to $268 per cr
    11·1 answer
  • What are 2 possible values for x where x ≥ 6?
    14·1 answer
  • Joan has red and pink hibiscus in groups of 9. She has x groups of red hibiscus and y groups of pink hibiscus. Which expression
    13·2 answers
  • GIVING BRAINLIEST FOR BEST ANSWER!
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!