Answer:
The combinations of necklaces and bracelets that the artist could sell for exactly $12.00 are
B:
2 necklaces and 5 bracelets
D:
4 necklaces and 2 bracelets
G:
No necklaces and 8 bracelets
Step-by-step explanation:
let the number of necklace be x
the number of bracelets be y
Then
The cost of one necklace is $2.25
The cost of one bracelets is $1.50
Thus
x(2.25) + y(1.50) = 12.00-------------------------(1)
<u>Option A : 5 necklaces and 1 bracelet</u>
(5)(2.25) + (1)(1.50) = 12.00
11.25 + 1.50 = 12.00
12.75 > 12.00
<u>Option B :2 necklaces and 5 bracelets</u>
(2)(2.25) + (5)(1.50) = 12.00
4.5 + 7.5 = 12.00
12. 00 = 12.00
<u>Option C: 3 necklaces and 3 bracelets</u>
(3)(2.25) + (3)(1.50) = 12.00
6.75 + 4.50 = 12.00
11.25 < 12.00
<u>Option D:
4 necklaces and 2 bracelets</u>
(4)(2.25) + (2)(1.50) = 12.00
9.00 + 3.00 = 12.00
12.00 = 12.00
<u>Option E:
3 necklaces and 5 bracelets</u>
(3)(2.25) + (5)(1.50) = 12.00
6.75 + 7.5 = 12.00
14.25 > 12.00
<u>Option F:
6 necklaces and no bracelets
</u>
(6)(2.25) + (0)(1.50) = 12.00
13.5 + 0 = 12.00
13.5 > 12.00
<u>Option G:
No necklaces and 8 bracelets</u>
(0)(2.25) + (0)(1.50) = 12.00
0 +12.00= 12.00
12.00 = 12.00