1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
3 years ago
8

What expression is equivalent to this equation :(-3x3y2)(5x5y4)2​

Mathematics
2 answers:
Igoryamba3 years ago
6 0
-3600y2 not sure but that’s what I got from photoMath
Sergeeva-Olga [200]3 years ago
4 0

Answer:

The equivalent expression to this equation is -30x⁸4y⁶

Step-by-step explanation:

For this expression, we have to multiply the terms. We can do this by following the order of operations.

(-3x³y²)(5x⁵y⁴)2

First, we have to multiply -3x³y² and 5x⁵y⁴ together.

(-15x⁸2y⁶)2

Now, we  multiply these terms together.

-30x⁸4y⁶

So, the expression that is equivalent to this equation is -30x⁸4y⁶

You might be interested in
For an integer n ≥ 0, show that (n/2) - (-n/2) = n.<br><br> Use greatest integer function
mars1129 [50]

The greatest integer function returns the largest integer smaller than the number you provide it. That is, if <em>n</em> ≤ <em>x</em> < <em>n</em> + 1, where <em>n</em> is an integer, then the "greatest integer of <em>x</em>" is [<em>x</em>] = <em>n</em>.

• Let <em>n</em> be even. Then we can write <em>n</em> = 2<em>k</em> for some integer <em>k</em> ≥ 0. Now,

[<em>n</em>/2] = [<em>k</em>] = <em>k</em>

while

[-<em>n</em>/2] = [-<em>k</em>] = -<em>k</em>

so that

[<em>n</em>/2] - [-<em>n</em>/2] = 2<em>k</em> = <em>n</em>

<em />

• Let <em>n</em> be odd. Then <em>n</em> = 2<em>k</em> + 1 for some integer <em>k</em> ≥ 0. Every odd integer occurs between two even integers, so that

<em>n</em> - 1 < <em>n</em> < <em>n</em> + 1

or equivalently,

2<em>k</em> < <em>n</em> < 2<em>k</em> + 2

so that

<em>k</em> < <em>n</em>/2 < <em>k</em> + 1

It follows that [<em>n</em>/2] = <em>k</em>.

Similarly, if we negative the previous inequality, we have

-<em>k</em> > -<em>n</em>/2 > -(<em>k</em> + 1), or -<em>k</em> - 1 < -<em>n</em>/2 < -<em>k</em>

which means [-<em>n</em>/2] = -<em>k</em> - 1.

So we make the same conclusion,

[<em>n</em>/2] - [-<em>n</em>/2] = <em>k</em> - (-<em>k</em> - 1) = 2<em>k</em> + 1 = <em>n</em>

3 0
2 years ago
work out the circumference of this circle take (pie) to be 3.142 and give ur answer in 1 decimal place radius=9m
Whitepunk [10]

Answer:

56.6m to 1.d.p

Step-by-step explanation:

circumference=2πr

=2×3.142×9

=56.556m

=56.6m to 1.d.p

4 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Quadratic equations 7x^2=49
fenix001 [56]
Hope I was able to help :-)

5 0
2 years ago
Three fourths of the fruit in a refrigerator are apples. There are 24 apples in the refrigerator. How many pieces of fruit are i
Eva8 [605]

3/4=24 so 1/4=8 therefore 4/4=32

8 0
2 years ago
Other questions:
  • Can someone show me how to do this
    10·2 answers
  • Find the solution for (7+6)+2=7+(x+2)
    14·2 answers
  • Is 2 ones the same as 20 tenths
    15·1 answer
  • Simplify the following expression.
    13·1 answer
  • PLEASE HELP ME GET THIS DONE
    12·1 answer
  • Ray is planning to open a video game store. He has developed the following expense breakdown for set-up and operation for the fi
    11·1 answer
  • Free 19 points because uneven number 8+2
    11·2 answers
  • Which quadrant will be completely shaded by the graph of 2x+3y ≥-6
    7·1 answer
  • Caroline think of a number add 9 then divide by 6 gets the answer 10
    15·1 answer
  • Karen walked tKaren walked 3 miles in 48 minutes popped walked 1 mile further than Karen it took Bob one hour and five minutes t
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!