Answer:

Step By Step Explanation:
- Rewrite



- Apply Perfect Square Formula


Answer:












And replacing we got:

And the best anwer is
10.12
Step-by-step explanation:
We have the following data given:
62 63 68 72 79 80 83 93 94 95
And we need to begin finding the mean with the following formula:

And replacing we got:

Now we can find the mean absolute deviation like this:










And finally we can find the mean abslute deviation with the following formula:

And replacing we got:

And the best anwer is
10.12
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>