Answer:
x = 5/2
Step-by-step explanation:
Isolate x by adding 2x to both sides, obtaining: 5 - 2x + 2x = 2x. Then 5 = 2x, and dividing both sides by 2 results in x = 5/2.
Answer:
- x = ±√3, and they are actual solutions
- x = 3, but it is an extraneous solution
Step-by-step explanation:
The method often recommended for solving an equation of this sort is to multiply by the product of the denominators, then solve the resulting polynomial equation. When you do that, you get ...
... x^2(6x -18) = (2x -6)(9)
... 6x^2(x -3) -18(x -3) = 0
...6(x -3)(x^2 -3) = 0
... x = 3, x = ±√3
_____
Alternatively, you can subtract the right side of the equation and collect terms to get ...
... x^2/(2(x -3)) - 9/(6(x -3)) = 0
... (1/2)(x^2 -3)/(x -3) = 0
Here, the solution will be values of x that make the numerator zero:
... x = ±√3
_____
So, the actual solutions are x = ±3, and x = 3 is an extraneous solution. The value x=3 is actually excluded from the domain of the original equation, because the equation is undefined at that point.
_____
<em>Comment on the graph</em>
For the graph, we have rewritten the equation so it is of the form f(x)=0. The graphing program is able to highlight zero crossings, so this is a convenient form. When the equation is multiplied as described above, the resulting cubic has an extra zero-crossing at x=3 (blue curve). This is the extraneous solution.
Let's solve the equation 2k^2 = 9 + 3k
First, subtract each side by (9+3k) to get 0 on the right side of the equation
2k^2 = 9 + 3k
2k^2 - (9+3k) = 9+3k - (9+3k)
2k^2 - 9 - 3k = 9 + 3k - 9 - 3k
2k^2 - 3k - 9 = 0
As you see, we got a quadratic equation of general form ax^2 + bx + c, in which a = 2, b= -3, and c = -9.
Δ = b^2 - 4ac
Δ = (-3)^2 - 4 (2)(-9)
Δ<u /> = 9 + 72
Δ<u /> = 81
Δ<u />>0 so the equation got 2 real solutions:
k = (-b + √Δ)/2a = (-(-3) + √<u />81) / 2*2 = (3+9)/4 = 12/4 = 3
AND
k = (-b -√Δ)/2a = (-(-3) - √<u />81)/2*2 = (3-9)/4 = -6/4 = -3/2
So the solutions to 2k^2 = 9+3k are k=3 and k=-3/2
A rational number is either an integer number, or a decimal number that got a definitive number of digits after the decimal point.
3 is an integer number, so it's rational.
-3/2 = -1.5, and -1.5 got a definitive number of digit after the decimal point, so it's rational.
So 2k^2 = 9 + 3k have two rational solutions (Option B).
Hope this Helps! :)
Find the volume of the candle using the formula for volume of a cylinder:
V = PI x r^2 x h = 3.14 x 3.4^2 x 6 = 217.79 cubic cm. Round to 217.8
Find the volume of the block: V = l x w x h = 15 x 12 x 18 = 3,240 cubic cm.
Now divide the volume of the block by the volume of a candle:
3240 / 217.8 = 14.88
Round to the nearest tenth = 14.9 candles.