Let's see what the options look like when we multiply the expressions in brackets:
(first, i multiply both parts of the second bracked by the first part of the first bracket, and then the same with the second part of the first bracket:
<span>(1) (3x - 3)(x - 2))
3x2 +6x -3x +6// this is not correct
(2) (3x + 3)(x - 2) </span>
3x2-6x+3x-6//this is not correct
(3)
3(x + 1)(x - 2)
3(x2-2x+x-2)//simplifying:
3(x2-x-2)//multiplying:
3x2-3x-6)
- so this is not correct either
(4) 3(x - 1)(x - 2)
3(x2-2x - x + 2)
3(x2-3x +2)
3x2-9x +6 - well, here is our winner!
_Award brainliest if helped!
if x =2 , 6(2) + 3y = 15
3y = 15-12
y = 1
if x=5, 6(5) + 3 y = 15
3y = -15
y= -5
1&15 and 3&5 are factors of 15
Answer:
(b) 1.95
Step-by-step explanation:
One of the easiest ways to evaluate an arithmetic expression of almost any kind is to type it into an on-line calculator. Many times, typing it into a search box is equivalent.
<h3>Application</h3>
See the attachment for the search box input (at top) and the result. This calculator has the benefit that it <em>always follows the Order of Operations</em> when evaluating an expression. (Not all calculators do.)
ln(7) ≈ 1.95
__
<em>Additional comment</em>
If your math course is asking you to evaluate such expressions, you have probably been provided a calculator to use, or given the requirements for a calculator suitable for use in the course.
There are some very nice calculator apps for phone and tablet. Many phones and tablets already come with built-in calculator apps. For the purpose here, you need a "scientific" or "graphing" calculator. A 4-function calculator will not do.
As with any tool, it is always a good idea to read the manual for your calculator and work through any example problems.
__
Years ago, handheld calculators were not available, and most desktop calculators were only capable of the basic four arithmetic functions. Finding a logarithm required use of a table of logarithms. Such tables were published in mathematical handbooks, and extracts of those often appeared as appendices in math textbooks used in school.
Answer:
760
Step-by-step explanation: