Answer:
<em>The maximum efficiency the plant will ever achieve is 75%</em>
<em>Explanation:</em>
From the question given, we recall the following:
<em>Th flames in the boiler reaches a temperature of = 1200K</em>
<em>the cooling water is = 300K</em>
<em>The maximum efficiency the plant will achieve is defined as:</em>
Let nmax = 1 - Tmin /Tmax
Where,
Tmin = Minimum Temperature in plants
Tmax = Maximum Temperature in plants
The temperature of the cooling water = Tmin = 300K
The temperature of the flames in boiler = Tmax = 1200k=K
The maximum efficiency becomes:
nmax = 1 - Tmin /Tmax
nmax = 1 - 300 /1200
nmax = 1-1/4 =0.75
nmax = 75%
Answer:
kjeo;fwigyds79ay08u-9[onpuefi2 ugw]yw=i\-o3ef
pw]oe;iLH[U
I\EF]
';/ilewuf[p';w iflkh;pif;oewu hf;wfyw hfu we
Explanation:
Answer:
b) Determine the heat transfer into the cycle and the net work for the cycle, in kJ.
Explanation:
As there are 10 V, for Vp1, that is the peak-voltage of the source:

Then, transformer's theory says that the relation of transformations is:
V1/V2=a
Where V1 is the voltage in the primary and V2 in the secondary.
V1=14.14 V
V2=8.55 V
a=1.65
Then, with the 8.5 V, we find the real peak-voltage, taking in account that in the diodes we have a drop of 0.7 V each, so:
8.5 -1.4=7.1 V
And this will be called VpL
Now we proceed to calculate the mean voltage:

Where Vr is the ripple voltage, we asume that is 1 V
So, Vmean = 6.6 V
Then we have
Vmean/R= I mean
We have that R=1000 Ohm
Imedia=6.6 V/1000 Ohm
Imedia=6.6 mAmps
Finally, we can calculate the capacitor:
C=Q/Vr
C=Imean/(Vr*2f)
Where f is 60Hz
C=6.6mA/(1V*120)
C=5.5 uFarads
Therefore:
C=5.5 uFarads that works at 12 V