Five months
Reason: graph y=35.75x+75 and y=17.95x+164 and they connect in the middle of 253-254 for month 5
The population Pa of insect A after t years is given by the equation
Pa = 1.3(1-0.038)^t
while the population Pb of insect B after t years is
Pb = 2.1(1-0.046)^t
We equate the above expressions to find the number of years t it will take the two populations to be equal:
Pa = Pb
1.3(1-0.038)^t = 2.1(1-0.046)^t
1.3(0.962)^t = 2.1(0.954)^t
These are the equations that can be used to determine how long it will be before the populations of the two species are equal.
We can now solve for t:
(0.962)^t / (0.954)^t = 2.1/1.3
(0.962/0.954)^t = 2.1/1.3
After taking the log of both sides of our equation, number of years t is
t = log (2.1/1.3) / log (0.962/0.954)
t = 57 years
Therefore, it will take 57 years for the population of insect A to equal the population of insect B.
Answer:
Total cost of equipment was $612. The remaining amount was spent on uniforms.
To find out how many uniforms were purchased,
Total cost of uniforms
=$912-$612
=$300
Number of uniforms purchased
=
$
300
$
25
=12
Step-by-step explanation: