interphase, prophase, metaphase, anaphase and telophase.
Answer:
Transcription and translation occur simultaneously in prokaryotes.
Explanation:
Prokaryotes lack membrane-bound organelles and therefore, do not have a nucleus. Transcription and translation occur in the cytoplasm. As soon as the required length of mRNA is being formed, ribosomes join it and start the process of translation. Prokaryotic genes lack introns. The primary transcript formed by transcription in prokaryotes does not undergo splicing.
On the other hand, the process of transcription occurs in the nucleus in eukaryotes while translation occurs in the cytoplasm. The primary transcript formed by transcription in eukaryotes undergoes modifications to remove introns and to add a poly-A tail and 5' cap. Post-transcriptional modifications and spatial separation of two processes in eukaryotes result in slower translation than prokaryotes.
When the earth was being created there were titanic plates they were underground which would shift break big continents and move them apart
Answer: The threats of environmental changes to the fitness, survival and reproductive success of individuals, and ultimately to the survival of species and ecosystems come from many directions: habitat destruction, disruption of food chains, changes in disease and parasitic loads, increased pollution and direct and indirect
Explanation:
If a plant cell had a mutation such that the cyclic electron flow is observed at a much higher rate, which photosystem is most likely mutated such that energy is absorbed at a lower rate?
PSI
PSII
Answer:
PSII
Explanation:
Non-cyclic phosphorylation involves both PSI and PSII. The process starts with the splitting of water and excitation of electrons of the reaction center of PSII upon the absorption of solar energy at the wavelength of 680 nm. Any mutation in PSII would not allow the non-cyclic phosphorylation to occur when only cyclic phosphorylation would occur. The process of cyclic phosphorylation includes only PS I. Its reaction center absorbs maximum light at 700 nm and is cycled back while supporting ATP synthesis. Therefore, if a plant performs cyclic phosphorylation at a higher rate and absorbs less energy, this means that mutation was in PSII.