Answer:
3
Step-by-step explanation:
Take 2 as a common then divide by 2
6÷2 =3
There are two variables here, which are time (minutes) and the number of beats, and they both have a relationship (68 beats in one minute), therefore it is an example of a unit rate
When written in the
form, the slope of a line is given by the coefficient
. Moreover, two lines are parallel if the have the same slope.
Now, the slope of the known line is 4, so our line's slope will be four as well.
In general, when you know the slope
of a line and one of its points
, the equation of the line can be derived from the following formula:

Which in your case becomes

Expand the right hand side and solve for y:

bearing in mind that, on the III Quadrant, sine as well as cosine are both negative, and that hypotenuse is never negative, so, if the sine is -4/5, the negative number must be the numerator, so sin(x) = (-4)/5.
![\bf sin(x)=\cfrac{\stackrel{opposite}{-4}}{\stackrel{hypotenuse}{5}}\impliedby \textit{let's find the \underline{adjacent}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2-(-4)^2}=a\implies \pm\sqrt{9}=a\implies \pm 3=a \\\\\\ \stackrel{III~Quadrant}{-3=a}~\hfill cos(x)=\cfrac{\stackrel{adjacent}{-3}}{\stackrel{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28x%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-4%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B5%5E2-%28-4%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B9%7D%3Da%5Cimplies%20%5Cpm%203%3Da%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BIII~Quadrant%7D%7B-3%3Da%7D~%5Chfill%20cos%28x%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B-3%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf tan\left(\cfrac{\theta}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos(\theta)}{1+cos(\theta)}} \\\\ \cfrac{sin(\theta)}{1+cos(\theta)}\qquad \leftarrow \textit{let's use this one} \\\\ \cfrac{1-cos(\theta)}{sin(\theta)} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20tan%5Cleft%28%5Ccfrac%7B%5Ctheta%7D%7B2%7D%5Cright%29%3D%20%5Cbegin%7Bcases%7D%20%5Cpm%20%5Csqrt%7B%5Ccfrac%7B1-cos%28%5Ctheta%29%7D%7B1%2Bcos%28%5Ctheta%29%7D%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Ctheta%29%7D%7B1%2Bcos%28%5Ctheta%29%7D%5Cqquad%20%5Cleftarrow%20%5Ctextit%7Blet%27s%20use%20this%20one%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B1-cos%28%5Ctheta%29%7D%7Bsin%28%5Ctheta%29%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
