1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
4 years ago
7

99 POINT QUESTION, PLUS BRAINLIEST!!!

Mathematics
2 answers:
VladimirAG [237]4 years ago
6 0
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
ra1l [238]4 years ago
6 0
Its A, you can use the pictures to show you

You might be interested in
A line passes through (-6,-5) and has the slope of 2/3 <br><br> HELPPPP PLEASE!!
Igoryamba

Answer:

y = 2/3x-1

Step-by-step explanation:

The slope intercept form of a line is

y = mx+b  where m is the slope and b is the y intercept

y = 2/3x +b

Using the point (-6,-5)

-5 = 2/3(-6)+b

-5 = -4 +b

Add 4 to each side

-5+4 = b

-1 =b

y = 2/3x-1

8 0
3 years ago
Read 2 more answers
If you multiply -2/3 by 1/5 is it a rational number?
Marizza181 [45]
Yes because Rational Numbers include decimals, fractions, and integers.<span />
8 0
3 years ago
You install 540 feet of fencing along the perimeter of a rectangle yard. The width of the yard is 106 feet. Write and solve an e
In-s [12.5K]

Answer:

Step-by-step explanation:

4 0
3 years ago
Community Gym charges a $50 membership fee and a $55 monthly fee. Workout Gym charges a $170 membership fee and a $45 monthly fe
ale4655 [162]

Answer:

12 months

Step-by-step explanation:

55x + 50 = 45x + 170

10x = 120

x = 12

3 0
4 years ago
3 10/15 - 1 12/15 what is difference
Montano1993 [528]

Answer:

28/15

Step-by-step explanation:

Convert the mixed numbers to improper fractions, then find the LCD and combine.

3 0
3 years ago
Other questions:
  • Find the measure of z.
    15·1 answer
  • Which is a solution to the following inequality?<br> MARK ALL THAT APPLY.<br> 5x-10 &gt; 42
    7·2 answers
  • I need help with the second one
    13·1 answer
  • -3x+25+x+21=2<br><br>please explain the steps i'm really confused
    5·2 answers
  • Part B The manager of The Gadget Factory wants to make sure that the next shipment costs no more than $15,000. Write an inequali
    14·1 answer
  • Free Brainliest
    5·2 answers
  • Can someone help me ​
    13·2 answers
  • Maths Option answers.
    14·1 answer
  • The length of a rectangle is 10 cm more than 3 times the width. The perimeter is 180. What are the dimensions?​
    13·1 answer
  • What kind of variation illustrates the relation of the speed and the distance travelled by a car in 2 hours?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!