1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
7

99 POINT QUESTION, PLUS BRAINLIEST!!!

Mathematics
2 answers:
VladimirAG [237]3 years ago
6 0
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
ra1l [238]3 years ago
6 0
Its A, you can use the pictures to show you

You might be interested in
What is the value of y
Reil [10]
All angles in a triangle add up to 180
So 79+37=116
180-116=64
Y=64
Hope this helps
5 0
3 years ago
Factorise the following 5y^2-20y-8z+2yz
andre [41]

Answer:

(5y+2z)(y-4)

Step-by-step explanation:

5y^2-20y-8z+2yz=\\5y^2-20y+2yz-8z=\\5y(y-4)+2z(y-4)=\\(5y+2z)(y-4)

8 0
3 years ago
I Really Need Help With This One Can Some One Plz Help Me?
Lapatulllka [165]
1.6²=1.6 times 1.6=2.56
4 0
3 years ago
2(15 + q ) = __ + 2q
Rzqust [24]

Answer:

30

Step-by-step explanation:

use distribution property

7 0
3 years ago
Read 2 more answers
Need help can anyone help me???​
Paladinen [302]

Answer:

  it is greater than 45°

Step-by-step explanation:

From the relationship of angles and secants/tangents, we have ...

  m∠GSO = (long arc GO -arc GT)/2

Solving for (long arc GO), we have ...

  2(m∠GSO) +arc GT = (long arc GO)

We know that (long arc GO) > 180°, so we can write ...

  2(m∠GSO) +90° > 180° . . . . arc GT = 90°

  2(m∠GSO) > 90° . . . . . . subtract 90°

  m∠GSO > 45° . . . . . . . . divide by 2

_____

<em>Alternate solution</em>

Inscribed ∠GOT has half the measure of arc GT, so is 45°.

You know that if angle G were 90°, then the right triangle would be isosceles, and angle S would also be 45°. In this triangle, arc GTO is less than 180°, so angle G is less than 90°.

When angle G gets smaller, the sum of angles remains the same, so angle S must be larger than 45°.

This reasoning is written more formally in the math above.

8 0
3 years ago
Other questions:
  • If 2a^2+3^1a-5a^2, then a-a^2=
    7·1 answer
  • The discriminant of a quadratic equation is negative. One solution is 3+4i . What is the other solution?
    15·2 answers
  • Can anyone help me wit this problem..
    6·1 answer
  • How much interest would $2,000 earn, with simple interest, in two years at the<br>rate of 4.2%?​
    14·1 answer
  • One of your classmates is working on an assignment for her statistics class. She created an online survey to collect student opi
    11·1 answer
  • four friends attend a school play $6 per ticket. Each also buys a healthy snack bag sold by the theatre club. If the friends spe
    7·2 answers
  • Find the value of X.
    8·1 answer
  • Refer to pictures above real help please
    8·1 answer
  • Closing prices of two stocks are recorded for 50 trading days. The sample standard deviation of stock X is 4.665 and the sample
    14·1 answer
  • Is this correct, if not what’s the answer
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!