1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
8

The regular price for admission to the

Mathematics
2 answers:
denis-greek [22]3 years ago
6 0

Answer: $5.25

Step-by-step explanation:

25/100 = 0.25

0.25 * 7 = 1.75

7 - 1.75 = 5.25

Neporo4naja [7]3 years ago
6 0
25%=1/4
7.00/4=1.75


2. Five seats of which 2 are window seats. 2/5 of the seats are window seats. 2/5 = 40/100 = 40%
You might be interested in
This is question is Estimate. 3245 dived 8 Choose 1 answer: A 4 b 40 c 400 d 4000
trapecia [35]

Answer:

<h3>The answer is option C.</h3>

Hope this helps you

4 0
3 years ago
Read 2 more answers
Anyone know the area?
Elina [12.6K]
Answer:  The area of the triangle is:  " 8.5 cm² " ; 

                                         or, write as:  " 8\frac{1}{2} cm² " .
_______________________________________________________
Explanation:
_________________________________________________________
The formula {"equation"} for the area of a triangle is:

A = (\frac{1}{2}) * b * h ;
   
in which:  A = area; 
                 b = base;
                 h = [perpendicular] height;
___________________________________
{also, can be written as:  " A = (b * h) / 2 " .}.
______________________________________
Solve for the area, "A" ; by plugging in the known values shown in the figure (image attached):
______________________________________
                             base, "b" = 13 cm ;
[perpendicular] height, "h" =  5 cm ;
______________________________________
A = (b * h) / 2 ;

   = (13 cm * 5 cm) / 2 ; 

   = [ (13 * 5) cm²] / 2 ; 

    = 65 cm² / 2 ;

A  = " 8.5 cm² " ; or, write as:  " 8\frac{1}{2} cm² " .
_________________________________________________________
Answer:  " 8.5 cm² " ; or, write as:  " 8\frac{1}{2} cm² " .
_________________________________________________________
The area of the triangle is:  " 8.5 cm² " ; 

                         or, write as:  " 8\frac{1}{2} cm² " .
_________________________________________________________
5 0
3 years ago
Could anyone help me with this? (A question I've been wondering about.)
Kamila [148]
Xbxhfjtiifixkdjdyfhdkkd 388484
5 0
3 years ago
Read 2 more answers
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Name the property used in n + 0 = 7.
Naya [18.7K]

Answer:

D

Step-by-step explanation:

Zero is the additive identity property.

Hope this helps

-Amelia

8 0
3 years ago
Read 2 more answers
Other questions:
  • A bin contains three components from supplier a, four from supplier b, and five from supplier
    8·1 answer
  • The table below shows data from a survey about the amount of time students spend doing homework each week. The students were in
    6·1 answer
  • Help for this question?!?
    8·2 answers
  • Solve the right triangle, ΔABC, for the missing sides and angle to the nearest tenth given angle B = 39° and side c = 13.
    6·1 answer
  • What is the reciprocal of 3/4? How can you be sure it is the reciprocal?
    6·2 answers
  • Please Help I do not know the answer to this.<br> The question is:
    5·1 answer
  • Rob owes Debra $36 and pays her 1/3 of what he owes. How much does he now owe?
    9·2 answers
  • So far this month Raul calculated that he will earn $30 in commission for his $200 in product sales. If Raul would like for his
    7·1 answer
  • Eight people go to a movie. Adult tickets cost $15 and children's tickets cost $8
    12·1 answer
  • Nathaniel bought headphones online for $22. He used a coupon code to get a 40% discount. The website also applied a 10% processi
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!