You plug 11 in where x is.
r(11) = (11 + 1)(11 - 3)
= (12)(8)
= 96
We have 4(x^2 - 2x + 4) - 7 = 4x^2 - 8x + 16 - 7 = 4x^2 - 8x + 9;
So, 4x^2 - 8x + 9 = <span>ax^2+bx+c
;
The value of b is -8.</span>
Start from the right-most 7, and go one digit to the left each time:
7 - units place
7 - tens place
7 - hundreds place
3 - thousands place
2 - ten-thousands place
6 - hundred-thousands place
5 - millions place
4 - ten-millions place <----- answer to this question
1 - hundred-millions place
8 - billions place
0 - ten-billions place
9 - hundred billions place
The ten-millions place is the 4.
<span>Simplifying
4x2 + 8xy + 4y2
Reorder the terms:
8xy + 4x2 + 4y2
Factor out the Greatest Common Factor (GCF), '4'.
4(2xy + x2 + y2)
Factor a trinomial.
4((x + y)(x + y))
Final result:
4(x + y)(x + y)</span>
Answer:
see below the first three problems
Step-by-step explanation:
f(g(-2))
First, find g(-2) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(-2) = -2(-2) + 1
g(-2) = 5
f(x) = 5x
f(5) = 5(5)
f(5) = 25
f(g(-2)) = 25
g(h(3))
First, find h(3) using function h(x). Then use that value as input for function g(x).
h(x) = x^2 + 6x + 8
h(3) = 3^2 + 6(3) + 8 = 9 + 18 + 8
h(3) = 35
g(x) = -2x + 1
g(35) = -2(35) + 1 = -70 + 1
g(35) = -69
g(h(3)) = -69
f(g(3a))
First, find g(3a) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(3a) = -2(3a) + 1
g(3a) = -6a + 1
f(x) = 5x
f(-6a + 1) = 5(-6a + 1)
f(-6a + 1) = -30a + 5
f(g(3a)) = -30a + 5