i am certain that this is the answer
<span>So you have composed two functions,
</span><span>h(x)=sin(x) and g(x)=arctan(x)</span>
<span>→f=h∘g</span><span>
meaning
</span><span>f(x)=h(g(x))</span>
<span>g:R→<span>[<span>−1;1</span>]</span></span>
<span>h:R→[−<span>π2</span>;<span>π2</span>]</span><span>
And since
</span><span>[−1;1]∈R→f is defined ∀x∈R</span><span>
And since arctan(x) is strictly increasing and continuous in [-1;1] ,
</span><span>h(g(]−∞;∞[))=h([−1;1])=[arctan(−1);arctan(1)]</span><span>
Meaning
</span><span>f:R→[arctan(−1);arctan(1)]=[−<span>π4</span>;<span>π4</span>]</span><span>
so there's your domain</span>
Since we are solving for h, the equation:
V = πr²h
...divides πr² to the other side. Thus, it becomes....

= h
Which can be rewritten as....
h =
Answer:
He is been paid $7 per hour
Step-by-step explanation:
140dollars/ 20 hours
Answer:
Shown - See explanation
Step-by-step explanation:
Solution:-
- The given form for rate of change is:
8 sec(x) tan(x) − 8 sin(x).
- The form we need to show:
8 sin(x) tan2(x)
- We will first use reciprocal identities:

- Now take LCM:

- Using pythagorean identity , sin^2(x) + cos^2(x) = 1:

- Again use pythagorean identity tan(x) = sin(x) / cos(x):
