Answer:
Option D
Explanation:
The exponential equation to determine the age of any radioactive object is as follows -
![t = [\frac{ln\frac{N}{N_{0} } }{-0.693} ]* t_{\frac{1}{2} }](https://tex.z-dn.net/?f=t%20%3D%20%5B%5Cfrac%7Bln%5Cfrac%7BN%7D%7BN_%7B0%7D%20%7D%20%7D%7B-0.693%7D%20%5D%2A%20t_%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)
where
Final quantity of isotope after degradation
initial quantity of isotope
half life period of isotope
time period of degradation
Substituting the given values in above equation we get -
![4.6 = [\frac{ln\frac{N}{N_{0} } }{-0.693} ]* 1.25\\ln\frac{N}{N_{0}} = 2.550\\\frac{N}{N_{0}} = 12.81\\](https://tex.z-dn.net/?f=4.6%20%3D%20%5B%5Cfrac%7Bln%5Cfrac%7BN%7D%7BN_%7B0%7D%20%7D%20%7D%7B-0.693%7D%20%5D%2A%201.25%5C%5Cln%5Cfrac%7BN%7D%7BN_%7B0%7D%7D%20%3D%202.550%5C%5C%5Cfrac%7BN%7D%7BN_%7B0%7D%7D%20%3D%2012.81%5C%5C)

Remaining isotope

Hence, option D is correct.