1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zloy xaker [14]
4 years ago
8

Simplify each each expression. If not possible, write simplified.

Mathematics
1 answer:
Harman [31]4 years ago
6 0
1. 10x
2. 18g
3. 6m
4. 4p
5. -5y
6. 9w
7. c^2+3d
8. 3a^2+2b^2+6a
9. 3x^2+x
10. 16x-y+3
11. 68x^2-34x-1
12. 32
13. 32
14. -9
15. 3m+3n
16. 6x-6y
17. 15f+5
You might be interested in
Consider the matrix A. A = 1 0 1 1 0 0 0 0 0 Find the characteristic polynomial for the matrix A. (Write your answer in terms of
dusya [7]

Answer with Step-by-step explanation:

We are given that a matrix

A=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]

a.We have to find characteristic polynomial in terms of A

We know that characteristic equation of given matrix\mid{A-\lambda I}\mid=0

Where I is identity matrix of the order of given matrix

I=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

Substitute the values then, we get

\begin{vmatrix}1-\lambda&0&1\\1&-\lambda&0\\0&0&-\lambda\end{vmatrix}=0

(1-\lambda)(\lamda^2)-0+0=0

\lambda^2-\lambda^3=0

\lambda^3-\lambda^2=0

Hence, characteristic polynomial =\lambda^3-\lambda^2=0

b.We have to find the eigen value  for given matrix

\lambda^2(1-\lambda)=0

Then , we get \lambda=0,0,1-\lambda=0

\lambda=1

Hence, real eigen values of for the matrix are 0,0 and 1.

c.Eigen space corresponding to eigen value 1 is the null space of matrix A-I

E_1=N(A-I)

A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&-1\end{array}\right]

Apply R_1\rightarrow R_1+R_3

A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]

Now,(A-I)x=0[/tex]

Substitute the values then we get

\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0

Then , we get x_3=0

Andx_1-x_2=0

x_1=x_2

Null space N(A-I) consist of vectors

x=\left[\begin{array}{ccc}x_1\\x_1\\0\end{array}\right]

For any scalar x_1

x=x_1\left[\begin{array}{ccc}1\\1\\0\end{array}\right]

E_1=N(A-I)=Span(\left[\begin{array}{ccc}1\\1\\0\end{array}\right]

Hence, the basis of eigen vector corresponding to eigen value 1 is given by

\left[\begin{array}{ccc}1\\1\\0\end{array}\right]

Eigen space corresponding to 0 eigen value

N(A-0I)=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]

(A-0I)x=0

\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0

\left[\begin{array}{ccc}x_1+x_3\\x_1\\0\end{array}\right]=0

Then, x_1+x_3=0

x_1=0

Substitute x_1=0

Then, we get x_3=0

Therefore, the null space consist of vectors

x=x_2=x_2\left[\begin{array}{ccc}0\\1\\0\end{array}\right]

Therefore, the basis of eigen space corresponding to eigen value 0 is given by

\left[\begin{array}{ccc}0\\1\\0\end{array}\right]

5 0
3 years ago
Which of the following is the solution set for -3t + 11 > 20?
Lesechka [4]
-3t+11>20
add 3t to both sides
11>20+3t
minus 20 both sides
-9>3t
divide both sides by 3
-3>t
t<-3

last one
3 0
4 years ago
Please help!! I need help with this question.
Ainat [17]
Its kinda blurry and I can't read the whole question
4 0
4 years ago
Perform the indicated operation. Be sure the answer is reduced.<br> x+1/x-8 - x/8-x =
Dominik [7]

Answer:

the second option

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Let f(x) = 4x – 32 and g(x) = 4x. . . Part 1 [4 points] What is (f ◦ g)(x) ? . Part 2 [2 points] Use complete sentences to descr
Paraphin [41]
To answer this equation, firs you must assign the g(x) to the value of f(x) to make the function answerable and able to find the value of x. So its gonna be f(g(x)) = 4(4x)-32. So x = 2 and f(x) = -24 and g(x) = 8
3 0
3 years ago
Other questions:
  • C=-3. a=2 b=4<br><br> (2)<br>2(3c+7)
    10·1 answer
  • BIG POINTS UP FOR GRABS!!!
    15·1 answer
  • Three times the sum of a number and five
    6·2 answers
  • For Ayana buys a new car with a sticker price of $8,469. For the down payments, she trades in her old car for $1,300. She financ
    10·1 answer
  • How do you find the sum of all integers between square root of 12 + square root of 40?
    7·1 answer
  • How do you write 214 135 in words
    5·2 answers
  • The triangles shown below must be congruent.
    6·2 answers
  • X = ??????geometryyyy
    8·1 answer
  • Help ASAP MATH TEST 3EEEEE
    11·1 answer
  • PLSSSS HELPPPPPPPPPPPPPPPPPP
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!