Let n = cost of 1 notebook
Let p = cost of 1 pencil
Then,
3n + 4p = 8.5
5n + 8p = 14.5
You can solve for one variable in terms of the other and then substitute into the remaining equation.
3n + 4p = 8.5
+ 5n + 8p = 14.5
Multiply the top equation by -2 so that the p-containing terms cancel each other out:
-2(3n + 4p = 8.5)
+ 5n + 8p = 14.5
-n + 0 = -2.5
So after dividing both sides by -1, we see that n = $2.5. Plugging into the first equation gives p = $0.25.
3n + 4p = 8.5
5n + 8p = 14.5
Answer:
the exact length of the midsegment of trapezoid JKLM =
i.e 6.708 units on the graph
Step-by-step explanation:
From the diagram attached below; we can see a graphical representation showing the mid-segment of the trapezoid JKLM. The mid-segment is located at the line parallel to the sides of the trapezoid. However; these mid-segments are X and Y found on the line JK and LM respectively from the graph.
Using the expression for midpoints between two points to determine the exact length of the mid-segment ; we have:







Thus; the exact length of the midsegment of trapezoid JKLM =
i.e 6.708 units on the graph
Answer:
a 3² +4² = 25 the factors are 5²
b 8²+6²= 100 the factors are 5²and 2²
c 12²+5²= 169 the factors are 13²
d 8²+15²= 289 the factors are 17²