The tangent line to <em>y</em> = <em>f(x)</em> at a point (<em>a</em>, <em>f(a)</em> ) has slope d<em>y</em>/d<em>x</em> at <em>x</em> = <em>a</em>. So first compute the derivative:
<em>y</em> = <em>x</em>² - 9<em>x</em> → d<em>y</em>/d<em>x</em> = 2<em>x</em> - 9
When <em>x</em> = 4, the function takes on a value of
<em>y</em> = 4² - 9•4 = -20
and the derivative is
d<em>y</em>/d<em>x</em> (4) = 2•4 - 9 = -1
Then use the point-slope formula to get the equation of the tangent line:
<em>y</em> - (-20) = -1 (<em>x</em> - 4)
<em>y</em> + 20 = -<em>x</em> + 4
<em>y</em> = -<em>x</em> - 24
The normal line is perpendicular to the tangent, so its slope is -1/(-1) = 1. It passes through the same point, so its equation is
<em>y</em> - (-20) = 1 (<em>x</em> - 4)
<em>y</em> + 20 = <em>x</em> - 4
<em>y</em> = <em>x</em> - 24
Hello there!
Start by asking yourself:"How to find the percentage of a number?"
We need to use the equation y = P% * x
In this case, the y is 20%
Y = P% * X
Y = 20% * X
Now we need to convert the percentage to decimal
P = 20%/100
P = 0.2
Then go back to the equation
Y= 0.2 * 5
Y = 1
The answer is 1
I hope the steps are easy to understand and hopefully the answer helps!
As always, I'm glad to help you today!