Based on all we know about the terrestrial worlds, the single factor appears to play the most important role in a terrestrial planet's geological destiny is size size of terrestrial planet .
According to the question
Terrestrial Planets:
They belongs to a class of planets that are like the earth
Geological destiny :
Geology is biological destiny: Whatever minerals land or are deposited in a place determine what or who can make a living there millions of years later
Based on all we know about the terrestrial worlds, what single factor appears to play the most important role in a terrestrial planet's geological destiny
i.e
The size of terrestrial planet is one of the factors to play the most important role in a terrestrial planet's geological destiny
which determines how long the planet can retain internal heat, which drives geological activity because Smaller worlds cool off faster and harden earlier .
Hence, Based on all we know about the terrestrial worlds, the single factor appears to play the most important role in a terrestrial planet's geological destiny is size size of terrestrial planet .
To know more about terrestrial here:
brainly.com/question/13490379
#SPJ4
A sphere??????????
i think thats the answer
I am pretty sure it is A Becoming warm
Since it’s moving and causing friction which makes it warm
Hope this helps
Mark me brainliest
<u>Answer</u>:
The radiant energy is converted into<u> electronic energy</u> before it is transformed into thermal energy.
<u>Explanation</u>:
Radiant energy occurs in the form of "Electromagnetic radiation" and it can pass through all types of matter travelling through the universe. There are numerous advantages of radiant energy. When the radiant energy is incident upon a substance the energy from the sun light excites the electrons in the atom. This sets the atoms in vibrational motion.
Thermal energy is the kinetic energy of moving particles. The thermal energy increases with increase in movement and number of moving particles. When the atoms make a transition from electronically excited state to vibrational state, the energy transfer increases the temperature of the substance. This is felt as thermal energy. Hence, the radiant energy is changed into "electronic energy" before it is converted into "thermal energy".