Answer:
2.5 * 10^-3
Explanation:
<u>solution:</u>
The simplest solution is obtained if we assume that this is a two-dimensional steady flow, since in that case there are no dependencies upon the z coordinate or time t. Also, we will assume that there are no additional arbitrary purely x dependent functions f (x) in the velocity component v. The continuity equation for a two-dimensional in compressible flow states:
<em>δu/δx+δv/δy=0</em>
so that:
<em>δv/δy= -δu/δx</em>
Now, since u = Uy/δ, where δ = cx^1/2, we have that:
<em>u=U*y/cx^1/2</em>
and we obtain:
<em>δv/δy=U*y/2cx^3/2</em>
The last equation can be integrated to obtain (while also using the condition of simplest solution - no z or t dependence, and no additional arbitrary functions of x):
v=∫δv/δy(dy)=U*y/4cx^1/2
=y/x*(U*y/4cx^1/2)
=u*y/4x
which is exactly what we needed to demonstrate.
Also, using u = U*y/δ in the last equation we can obtain:
v/U=u*y/4*U*x
=y^2/4*δ*x
which obviously attains its maximum value for the which is y = δ (boundary-layer edge). So, finally:
(v/U)_max=δ^2/4δx
=δ/4x
=2.5 * 10^-3
Answer:
Given that,
- Power = 2000 W
- time = 60 seconds
- distance= 10m
Power = work done ÷ time
Here, since the movement is vertical, w = mgh
So,
Power = mgh÷t
2000 = (m × 9.8 ×10) ÷ 60
m = (2000 ×60) ÷98
m = 1224.5kg
kinetic energy is usually measured in joule J which is equals to kgm²/s²
Answer:
15 and Increasing
Explanation:
Hope this helps
Have a wonderful day and many more to come
Alexis~
~A.K.A Moon~
The answer would be 46.482 because you multiply 18.3 by 2.54 because for every inch you get 2.54 centimeters