It is 120 because first 8 goes into 96 which is 12. just add the 0 since u cant do anything else and it’s 120.
The answer that I got was 4 for the interquartile range of the numbers. hope this helped and let me know if the answer is correct.
3^n=27
Solve Exponent.
3^n=27
log(3n)=log(27)(Take log of both sides)
n*(log(3))=log(27)
n=log(27) / log(3)
n=3
<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}