1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
3 years ago
10

Please find the result !​

Mathematics
2 answers:
Sliva [168]3 years ago
6 0

Answer:

\displaystyle - \frac{1}{2}

Step-by-step explanation:

we would like to compute the following limit:

\displaystyle  \lim _{x \to 0} \left( \frac{1}{  \ln(x +  \sqrt{  {x}^{2}  + 1} ) } -  \frac{1}{  \ln(x + 1) }  \right)

if we substitute 0 directly we would end up with:

\displaystyle\frac{1}{0}  -  \frac{1}{0}

which is an indeterminate form! therefore we need an alternate way to compute the limit to do so simplify the expression and that yields:

\displaystyle  \lim _{x \to 0} \left( \frac{ \ln(x + 1) -  \ln(x +  \sqrt{ {x}^{2} + 1 } }{  \ln(x +  \sqrt{  {x}^{2}  + 1} )  \ln(x + 1)  }  \right)

now notice that after simplifying we ended up with a<em> </em><em>rational</em><em> </em>expression in that case to compute the limit we can consider using L'hopital rule which states that

\rm \displaystyle  \lim _{x \to c} \left( \frac{f(x)}{g(x)}  \right)  = \lim _{x \to c} \left( \frac{f'(x)}{g'(x)}  \right)

thus apply L'hopital rule which yields:

\displaystyle  \lim _{x \to 0} \left( \frac{  \dfrac{d}{dx}  \ln(x + 1) -  \ln(x +  \sqrt{ {x}^{2} + 1 }  }{   \dfrac{d}{dx} \ln(x +  \sqrt{  {x}^{2}  + 1} )  \ln(x + 1)  }  \right)

use difference and Product derivation rule to differentiate the numerator and the denominator respectively which yields:

\displaystyle  \lim _{x \to 0} \left( \frac{ \frac{1}{x + 1}  -  \frac{1}{ \sqrt{x + 1} }  }{ \frac{ \ln(x + 1)}{ \sqrt{ {x}^{2}  + 1 }     }    +  \frac{  \ln(x +  \sqrt{x ^{2} + 1 }  }{x + 1} }  \right)

simplify which yields:

\displaystyle  \lim _{x \to 0} \left( \frac{ \sqrt{ {x}^{2} + 1  } - x - 1 }{  (x + 1)\ln(x  + 1 )  +  \sqrt{ {x}^{2}  + 1} \ln( x + \sqrt{ {x }^{2}  + 1} )   }  \right)

unfortunately! it's still an indeterminate form if we substitute 0 for x therefore apply L'hopital rule once again which yields:

\displaystyle  \lim _{x \to 0} \left( \frac{  \dfrac{d}{dx} \sqrt{ {x}^{2} + 1  } - x - 1 }{  \dfrac{d}{dx}  (x + 1)\ln(x  + 1 )  +  \sqrt{ {x}^{2}  + 1} \ln( x + \sqrt{ {x }^{2}  + 1}  )  }  \right)

use difference and sum derivation rule to differentiate the numerator and the denominator respectively and that is yields:

\displaystyle  \lim _{x \to 0} \left( \frac{  \frac{x}{ \sqrt{ {x}^{2} + 1 }  }  - 1}{      \ln(x + 1)   + 2 +  \frac{x \ln(x +  \sqrt{ {x}^{2} + 1 } ) }{ \sqrt{ {x}^{2} + 1 } } }  \right)

thank god! now it's not an indeterminate form if we substitute 0 for x thus do so which yields:

\displaystyle   \frac{  \frac{0}{ \sqrt{ {0}^{2} + 1 }  }  - 1}{      \ln(0 + 1)   + 2 +  \frac{0 \ln(0 +  \sqrt{ {0}^{2} + 1 } ) }{ \sqrt{ {0}^{2} + 1 } } }

simplify which yields:

\displaystyle - \frac{1}{2}

finally, we are done!

Assoli18 [71]3 years ago
4 0

9514 1404 393

Answer:

  -1/2

Step-by-step explanation:

Evaluating the expression directly at x=0 gives ...

  \dfrac{1}{\ln(\sqrt{1})}-\dfrac{1}{\ln(1)}=\dfrac{1}{0}-\dfrac{1}{0}\qquad\text{an indeterminate form}

Using the linear approximations of the log and root functions, we can put this in a form that can be evaluated at x=0.

The approximations of interest are ...

  \ln(x+1)\approx x\quad\text{for x near 0}\\\\\sqrt{x+1}\approx \dfrac{x}{2}+1\quad\text{for x near 0}

__

Then as x nears zero, the limit we seek is reasonably approximated by the limit ...

  \displaystyle\lim_{x\to0}\left(\dfrac{1}{x+\dfrac{x^2}{2}}-\dfrac{1}{x}\right)=\lim_{x\to0}\left(\dfrac{x-(x+\dfrac{x^2}{2})}{x(x+\dfrac{x^2}{2})}\right)\\\\=\lim_{x\to0}\dfrac{-\dfrac{x^2}{2}}{x^2(1+\dfrac{x}{2})}=\lim_{x\to0}\dfrac{-1}{2+x}=\boxed{-\dfrac{1}{2}}

_____

I find a graphing calculator can often give a good clue as to the limit of a function.

You might be interested in
What is 8 16/1000 simplified?
dimaraw [331]
8 16/1000 = 8 2/125
Keep whole number the same, divide the numerator and denominator by 8.
8 0
3 years ago
Here is the questions sorry
xxMikexx [17]

Answer:

I think the answer is about 10

Step-by-step explanation:

6 0
3 years ago
A circle has its center at (-2, 5) and a radius of 4 units. What is the equation of the circle? Answer choices:
Vanyuwa [196]
The equation of the circle:
( x - h )² + ( y - k )² = r²;
h = - 2,  k = 5,  r = 4
Answer:
A ) ( x + 2 )² + ( y - 5 )² = 16
4 0
3 years ago
Read 2 more answers
Choose the best definition for the following term: substitution
Tatiana [17]
The best definition for the term substitution would be...

the action of replacing someone or something with another person or thing.
8 0
3 years ago
Read 2 more answers
Why might a mattress store choose to advertise new mattresses, worth $1,000, as $50 per week for 22 weeks?
IgorLugansk [536]
By doing so, they provide the illusion that the payments are cheaper then 1000 dollars, because 50 looks very small, when in reality it's $100 more then what the mattress is actually worth.
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the center of the data?
    15·2 answers
  • Ax + By = C for x. plz sove
    5·1 answer
  • A
    6·1 answer
  • Nancy has 100 candy bars. She ate 47 of them in one day. Then she gave 12 of them to her friend David . How much does she have n
    12·2 answers
  • A vehicular travels a distance of 5t^4-10t^2+6 miles in t+2 minutes
    14·1 answer
  • Next question <br> lets keep going
    5·2 answers
  • How many mins are in 4 and a half hours.
    9·1 answer
  • As part of his retirement planning, Mr. Jones purchases an annuity that pays 11.5% compounded quarterly. If the quarterly paymen
    6·1 answer
  • What is the surface area of the triangular prism (Look at image)
    6·2 answers
  • Put the following equation of a line into slope-intercept form, simplifying all
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!